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ABSTRACT 

This paper studies the modeling and optimization of energy use and greenhouse gas emissions of eggplant 
production using artificial neural network and multi-objective genetic algorithm in Guilan province of 
Iran. Results showed that the highest share of energy consumption belongs to diesel fuel (49.24%); 
followed by nitrogen (33.30%). The results indicated that a total energy input of 13910.67 MJ ha-1 was 
consumed for eggplant production. In ANN, the Levenberg-Marquardt Algorithm was examined to 
finding best topology for modeling and optimization of energy inputs an GHG emissions for eggplant 
production. The results of ANN indicated the best topology with 12-9-9-2 structure had the highest R2, 
lowest RMSE and MAPE.  Also, the multi-objective optimization was done by MOGA. In this research, 
42 optimal was introduced by MOGA based minimum total GHG emissions and maximum yield of 
eggplant production, in the studied area. Also, the results revealed that the best generation with lowest 
energy use was consumed about 4597 MJ per hectare. The GHG emissions of best generation was 
calculated as about 127 kg CO2eq. ha-1. The potential of GHG reduction by MOGA was computed as 
388.48 kg CO2eq. ha-1. Also, the highest reduction of GHG emissions belongs to diesel fuel with 65.05%.  
 
Key words: Eggplant; Energy consumption; Greenhouse gas emissions; Modeling; Optimization. 
 
 
1- INTRODUCTION 
 
Eggplant (Solanum melongena L.), also known as Aubergine, Brinjal or Guinea squash is one of the 
nontuberous species of the night shade family Solanaceae (Kantharajah and Golegaonkar, 2004). Energy 
auditing can be used as building blocks for life-cycle assessments that include agricultural products, and 
can also serve as a first step towards identifying crop production processes that benefit most from 
increased efficiency (Hemmati et al., 2013). On the other hand agricultural production has been identified 
as a major contributor to atmospheric greenhouse gases (GHG) on a global scale with about 14% of 
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global net CO2 emissions coming from agriculture (IPCC, 2007). Practices on GHG emissions or to 
assess climate change mitigation measures (Dyer et al., 2010). Models are the only practical way to 
quantify the net effect of farm. Artificial neural networks (ANN) have been widely used in different fields 
of agriculture like economic, energy and environmental modeling as well as to extend the field of 
statistical methods, in the last few decades (Khoshnevisan et al., 2013a). The main reason that ANN 
applications have received considerable attention is that the methodology is comparable to statistical 
modeling and ANNs could be faced as complementary effort (without the restrictive assumption of a 
particular statistical model) or an alternative approach to fitting non-linear data. Recently, the number of 
scientists and engineers who are interested in modeling of energy consumption and related environmental 
impacts has been increased (Khoshnevisan et al., 2013b). Application of ANNs to estimate yield and 
GHG emissions of wheat production in Isfahan, Iran was reported by Khoshnevisan et al. (2013b). They 
used an ANN model with twelve input variables, one hidden layer with eight neurons and two outputs. 
Effective energy use in agriculture is one of the conditions for sustainable agricultural production, since it 
provides financial savings, fossil resources preservation and air pollution reduction (Nabavi-Pelesaraei et 
al., 2013a). multi-objective genetic algorithm (MOGA) is one main method for optimization in recent 
years. The genetic algorithm is an example of a search procedure that uses random selection for 
optimization of a function by means of the parameters space coding. The genetic algorithms were 
developed by Holland (1975) and the most popular references are perhaps Goldberg (1997) and a more 
recent one by Bäck (1996). Few research was done by genetic algorithm for optimization energy in 
agriculture, Hematian et al. (2013) investigated on optimization of energy consumption for sugar beet 
production. Their results indicated that the optimized total energy used for producing the sugar beet crops 
was 32716.06 MJ ha-1. The main aim of this study was modeling of energy use and GHG emissions of 
eggplant production in Guialn province of Iran using ANN. Furthermore, the energy consumption and 
GHG emissions was optimized together by MOGA. 
 

 
2- MATERIALS AND METHODS 

2-1- Sampling design 

This study was carried out in the eggplant farms located in Guilan province, Iran. Guilan province had the 
five place in producing eggplant in Iran (Ministry of Jihad-e-Agriculture of Iran, 2012). Guilan is located 
within 36◦ 34׳ and 38◦ 27׳ north latitude and 48◦ 53׳ and 50◦ 34׳ east longitude. Data were collected by 
using a face-to-face questionnaire performed in the production year 2012/2013. Average farm size was 
0.5 ha in the area studied while the size of farms varied between 0.1 ha and 4 ha. From the villages in the 
area studied, farms were selected by using stratified sample randomly. The sample size was calculated 
using Cochran method (Mobtaker et al., 2010). It’s should be noted, the sample size was computed as 60. 
For determination of input and output energy, the energy standard coefficients were utilized. These 
coefficient are illustrated in Table 1. Also, energy equivalent for machinery is calculated by Eq.(1) 
(Hatirli et al., 2005): 

 

aTC
ELGME   (1) 
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where ‘ME’ is the machine energy (MJ ha-1), ‘E’ the production energy of machine (MJ kg-1 yr-1) that is 
shown in Table 1, ‘L’ the useful life of machine (year), ‘G’ the weight of machine (kg), ‘T’ the economic 
life of machinery (h) and ‘Cɑ’ the effective field capacity (ha h-1). The CO2 emission coefficients that are 
shown in Table 2 were used to calculate the amounts of the GHG emissions from inputs in eggplant 
production per hectare. The application rate of machinery, diesel fuel, chemical fertilizers and biocides 
per hectare were multiplied by their corresponding emission coefficients which were taken from Table 2. 
The GHG coefficient of machinery input consists of manufacturing and applying the machinery on the 
farm (Pishgar-Komleh et al., 2013). 
 

2-2- ANN design 

ANN are data-processing systems inspired by biological neural system and are used to solve a wide 
variety of problems in science and engineering, particularly for some areas where the conventional 
modelling methods fail. A well-trained ANN can be used as a predictive model for a specific application. 
The predictive ability of an ANN results from the training on experimental data and then validation by 
independent data. An ANN has the ability to relearn to improve its performance if new data are available 
(Najafi et al., 2009). In this study, the modeling of energy consumption and GHG emissions was obtained 
from ANN. A typical ANN model consists of an input layer, one or more hidden layers and an output 
layer (Khoshnevisan et al., 2013c). Accordingly, the model was created based eight inputs including 
human labor, machinery, diesel fuel, nitrogen, phosphate, potassium, biocides and seed and two outputs 
covering output energy and total GHG emissions. The Levenberg-Marquardt learning Algorithm was 
applied to training ANN. All links between input layers and hidden layers composed the input weight 
matrix and all links between hidden layers and output layers composed the output weight matrix. Weight 
(w) which controls the propagation value (x) and the output value (O) from each node is modified using 
the value from the preceding layer according to Eq. (2) (Zhao et al., 2009): 

 

  ii xwTfO  (2) 
 
 

where ‘T’ is a specific threshold (bias) value for each node. ‘f ’ is a non-linear sigmoid function, which 
increased monotonically. The performance of the trained networks was measured by root mean square 
error (RMSE), mean absolute percentage error (MAPE) and coefficient of determination (R2) on another 
set of data (testing set), not seen by the network during training and cross-validation (CV), between the 
predicted values of the network and the target (or experimental) values.  

The RMSE, MAPE and R2 can be written as (Zangeneh et al., 2011): 
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where ‘n’ is the number of the points in the data set, and ‘t’ and ‘z’ are actual output and predicted output 
sets, respectively. 

2-3- Multi-objective genetic algorithm (MOGA) 

Being a population-based approach, genetic algorithm are well suited to solve multi-objective 
optimization problems. A generic single-objective genetic algorithm can be modified to find a set of 
multiple non-dominated solutions in a single run. The ability of genetic algorithm to simultaneously 
search different regions of a solution space makes it possible to find a diverse set of solutions for difficult 
problems with non-convex, discontinuous, and multi-modal solutions spaces (Konak et al., 2006). The 
first step of optimization by MOGA was calculation of production functions. Based energy inputs and 
outputs (eggplant yield and total GHG emissions), the production functions was determined according to 
Eq. (6) and (7): 

 
ii eXXXXXXXXaY  88776655443322110   (6) 

ii eXXXXXXXXG  88776655443322110   (7) 
 

Where Xi stands for corresponding energies as ‘X1’, human labor; ‘X2’,machinery; ‘X3’, diesel fuel; ‘X4’, 
nitrogen; ‘X5’, phosphate; ‘X6’, potassium; ‘X7’, biocides; ‘X8’, seed, ‘Yi’ eggplant yield, and ‘Gi’ total 
GHG emissions. 

Then, the limits of functions was calculated based minimum and maximum of energy consumption for 
each input. 

Basic information on energy inputs and GHG emissions of eggplant production was entered into Excel 
2010 spreadsheets, SPSS 20 and Matlab 7.2 (R2012a) software package. 

 
3- RESULTS AND DISCUSSION 

3-1- Analysis of input–output energy use in eggplant production 

The amount of inputs and output energy used in eggplant production in the study area and percentage of 
each energy input in to total energy input for three groups of farm sizes are shown in Table 3. The results 
revealed the total energy inputs and output was computed as 13910.67 and 125612 MJ ha-1, respectively. 
As is seen in Table 3, diesel fuel (with 49.24%) spent the most percentage of total energy input followed 
by nitrogen (with 33.30%) in this region for all three farms. The ANOVA results illustrated that the 
difference between three groups of farms wasn’t significant in the 5% level. At first, it seems that farmers 
should try to reduce diesel fuel and nitrogen fertilizer consumptions in this region until the energy 
efficiency and energy productivity increases with total energy input reduction. Seed, potassium and had 
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less share of total energy input, respectively. In some related studies total energy input has been reported 
as 18.93 GJ ha-1 for sunflower (Uzunoz et al., 2008), 25.03 GJ ha-1 for barley (Mobtaker et al., 2010), 
18.02 GJ ha-1 for soybean in Golestan province of Iran (Ramedani et al., 2011), 19.25 GJ ha-1 for peanut 
production in Guilan province, Iran (Nabavi-Pelesaraei et al., 2013b). 

3-2- GHG emissions of eggplant production 

The GHG emissions of different inputs was calculated by using the GHG conversion factors presented in 
Table 2. The results revealed that total emissions of eggplant production was 515.37 kg CO2eq. ha-1 (Table 
4) from which machinery, diesel fuel, chemical fertilizers and biocides inputs, respectively. The highest 
share of emissions was belonged to diesel fuel with 65.14%; followed by nitrogen (with 17.67%) and 
machinery (with 11.17%). The ANOVA results showed The non-significant difference was found to be 
between three groups of farms. Also, the small and large farms had the highest and lowest rate of GHG 
emissions among all farms, respectively. Because, the emissions pattern of small farms  (specially in 
diesel fuel and nitrogen consumption) should be closed to large farms. In a similar study, the diesel fuel 
and nitrogen had the highest share for GHG emissions in wheat production of Isfahan, Iran (Ghahderijani 
et al., 2013). 

3-3- Evaluation and analysis of model 

The Levenberg-Marquardt algorithm was applied for modeling of eggplant yield and GHG emissions 
based energy inputs. The ANN model with twelve neuron in input layers, two hidden layer with 9 neuron 
for each layer and two outputs (best structure: 12-9-9-2) was determined as best structure, in this study. 
The results of best topology are given in Table 5. The results disclosed the determination of coefficient 
for yield and GHG emissions of eggplant production was calculated as 0.963 and 0.988, respectively. 
Also, the rate of RMSE was found to be 0.056 and 0.023 for eggplant yield and GHG emissions, 
respectively. 

Rahman and Bala (2010) reported that a model consisted of an input layer with six neurons, two hidden 
layers with 9 and 5 neurons and one neuron in the output layer was the best topology for predicting jute 
production in Bangladesh. Safa and Samarasinghe (2011) developed an ANN model based on a modular 
neural network with two hidden layers that could predict energy consumption based on farm conditions 
(size of crop area), social factors (farmers’ education level), and energy inputs (N and P use, and 
irrigation frequency). Their result showed that ANN model is more viable to predict energy consumption 
in wheat production rather than regression models. In another study, Khoshnevisan et al. (2013b) reported 
that a model consisted of an input layer with twelve neurons, one hidden layer with 8 neurons and the 
output layer with two variables was the best topology for predicting basil production in Esfahan province 
of Iran. 

3-4- Optimization of energy inputs and GHG emissions 

The model of yield and GHG emissions was optimized by MOGA based energy inputs. The limitation of 
energy inputs are demonstrated in Table 6. The minimum consumption was considered as lower limit; 
While the maximum quantity of energy for each input was determined as higher limit.  

Also, the productions function was calculated based Eq. (6) and (7): 
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ii eXXXXXXXXY  87654321 26.102.042.040.040.032.026.044.073.4     (8) 

ii eXXXXXXXXG  87654321 01.005.031.096.096.059.060.002.011.1     (9) 

In this study, the MOGA was computed 42 optimal generation based maximum eggplant yield and 
minimum total GHG emissions (Table 7). Moreover, the best generation was determined based minimum 
energy consumption in this study. Accordingly, No. 28 was selected as efficient generation for the studied 
area. In another words, this generation had the maximum yield, minimum GHG emissions and minimum 
energy consumption for eggplant production in Guilan province of Iran. The total energy consumption 
and GHG emissions of best generation was found to be about 4597 MJ ha-1 and 127 kgCO2eq. ha-1, 
respectively. 

In the last part of this study, the potential of GHG reduction by MOGA was calculated. Fig 1 displays the 
share of each input for total GHG reduction. Based the results, diesel fuel (with 65.05%) had the highest 
percentages in GHG reduction; followed by nitrogen (with 16.25%) and machinery (with 12.25%). With 
respect to results, it’s suggested, in the first step, the diesel fuel consumption and machinery should be 
reduced by timely maintenance and selection of appropriate machinery. Also, the applying minimum 
tillage, no tillage system and bio-fertilizers instead conventional tillage and chemical fertilizers can be 
reduced energy consumption and GHG emissions in the studied area, significantly. 
 

4- CONCLUSION 

The main objective of this study was to model and optimize yield (or output energy) and GHG emissions 
of eggplant production in the Guilan province of Iran. The results revealed that the total input and output 
energies in eggplant production were 13910.67 and 125612.00 MJ ha-1, respectively and simultaneously 
the total GHG emissions was 515.37 kg CO2eq. ha-1. Based on the results, diesel fuel was the most 
influential factor in energy consumption and GHG emissions. For eggplant production, the ANN model 
with 12-9-9-2 structure was the best model for forecasting the output energy and GHG emissions. For the 
best topology RMSEs were 0.056 and 0.023, MAPEs were 0.105 and 0.010 for output energy and GHG 
emissions, respectively. Moreover, the R2 was calculated as 0.963 and 0.988 for energy and GHG 
emissions modeling, respectively. The results of multi-objective optimization showed the MOGA was 
apprised 42 generation containing maximum yield and minimum total GHG emissions as optimal units; 
But the best generation was selected based minimum energy consumption. The total energy use and GHG 
emissions of best generation was evaluated about 4597 MJ ha-1 and 127 kg CO2eq. ha-1. Also, the highest 
share of GHG reduction was belonged to diesel fuel with 65.05%. So, the selection of standard machinery 
can be saved the energy consumption and reduce the GHG emissions, significantly. 
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Table 1. 

Energy equivalent of inputs and output in agricultural production. 

Reference Energy equivalent 
 (MJ unit-1) Unit Items (unit) 

   A. Inputs 
(Mohammadshirazi et al., 2012) 1.96 h 1. Human labor 
  kg yra 2. Machinery 
(Hatirli et al., 2005) 9-10      (a) Tractor and self-propelled 
(Hatirli et al., 2005) 6-8      (b) Implement and machinery 
(Mobtaker et al., 2010) 56.31 L 3. Diesel fuel 
  kg 4. Chemical fertilizers 
(Mousavi-Avval, 2011) 66.14      (a) Nitrogen 
(Rafiee et al., 2010) 12.44      (b) Phosphate(P2O5) 
(Unakitan et al., 2010) 11.15      (c) Potassium (K2O) 
(Nabavi-Pelesaraei et al., 2013b) 120 kg 5. Biocides 
(Kitani, 1999) 5.9 kg 6. Seed 
   B. Output 
(Kitani, 1999) 5.9 kg     Eggplant 

a The economic life of machine (year). 
 

Table 2. 
GHG emissions coefficients of agricultural inputs. 

Input Unit GHG Coefficient 
(kg CO2eq unit-1) Reference 

1. Machinery MJ 0.071 (Dyer and Desjardins, 2006) 
2. Diesel fuel L 2.76 (Dyer and Desjardins, 2003) 
3. Chemical fertilizers  kg   
    (a) Nitrogen   1.3 (Nabavi-Pelesaraei et al., 2013a) 
    (b) Phosphate (P2O5)  0.2 (Nabavi-Pelesaraei et al., 2013a) 
    (c) Potassium (K2O)  0.2 (Pishgar-Komleh et al., 2013) 
4. Biocides  kg 6.3 (Lal, 2004) 

 
Table 3. 

Amounts of energy inputs and output in eggplant production based on different farm size levels. 

Percentage (%) Average 
(MJ ha -1) 

Farm size groups (ha) 
Items Large 

(>3) 
Medium 
(1-3) 

Small 
(<1) 

     A. Inputs           
4.58 637.12 581.13c 645.53b 678.92a 1. Human labor 
5.83 810.93 810.50b 777.74b 953.50a 2. Machinery 
49.24 6849.41 6160.41c 6858.17b 7768.86a 3. Diesel fuel 
     4. Chemical fertilizers 
33.30 4631.98 4219.21a 4626.92a 5226.90a     (a) Nitrogen  
2.68 372.58 339.37b 372.17ab 420.43a     (b) Phosphate (P2O5) 
1.39 192.73 175.55b 192.52ab 217.48a     (c) Potassium (K2O) 
2.96 411.20 336.62a 427.49a 445.14a 5. Biocides 
0.03 4.72 4.69b 4.73ab 4.71a 6. Seed 
      
100 13910.67 12627.49a 13905.27a 15715.96a The total energy input 
      
     B. Output 
 125612.00 118745.18c 125580.93b 13582.16a      Eggplant 

Note: Different letters show significant difference of means at 5% level. 
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Table 6. 
Limits of functions for multi-objective genetic algorithm (MJ ha-1) 

338.17 ≤ X1 ≤ 1186.48 113.99 ≤ X5 ≤ 861.06 
144.84 ≤ X2 ≤ 2172.54 58.97 ≤ X6 ≤ 445.42 
1674.02 ≤ X3 ≤ 16740.23 58.03 ≤ X7 ≤ 1059.68 
1417.18 ≤ X4 ≤ 10174.99 2.58 ≤ X8 ≤ 6.46 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. 
GHG emissions of inputs in eggplant based on different farm size levels. 

Percentage 
(%) 

Average 
(kg CO2eq. ha-1)  

Farm size groups (ha) 
Items Large 

(>3) 
Medium 
(1-3) 

Small 
(<1) 

11.17 57.58 57.55a 55.22b 67.70a 1. Machinery 
65.14 335.72 301.95a 336.15b 380.79a 2. Diesel fuel 
     3. Chemical fertilizers 
17.67 91.04 82.93a 90.94b 102.74a     (a) Nitrogen 
1.16 5.99 5.46a 5.98a 6.76a     (b) Phosphate (P2O5) 
0.67 3.46 3.15a 3.45b 3.90a     (c) Potassium (K2O) 
4.19 21.59 17.67a 22.44a 23.37a 4. Biocides 
100 515.37 468.70a 514.19b 585.25a Total GHG emissions 

Note: Different letters show significant difference of means at 5% level. 

Table 5. 
The best result of different arrangement of models. 

Item Eggplant yield GHG emissions 
R2 0.963 0.988 
RMSE 0.056 0.023 
MAPE 0.105 0.010 
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Table 7. 
Multi-objective genetic algorithm results for optimization of energy inputs and GHG emissions in eggplant production. 

Generation 
number 

Optimum energy use (MJ ha–1)  Optimum GHG emissions (kgCO2eq. ha–1) 

Human 
labor Machinery Diesel 

fuel Nitrogen Phosphate Potassium Biocides Seed Total energy 
use  Machinery Diesel 

fuel Nitrogen Phosphate Potassium Biocides Total GHG 
emissions 

1 1177 2142 16235 1461 120 59.1 78.5 6.46 21280  152 796 28.7 1.93 1.06 4.12 984 
2 1179 187 12629 1423 115 59.6 64.0 6.45 15664  13 619 28.0 1.85 1.07 3.36 667 
3 1177 2142 16235 1461 120 59.1 78.5 6.46 21280  152 796 28.7 1.93 1.06 4.12 984 
4 1155 145 1765 1421 115 59.2 59.3 6.23 4725  10 87 27.9 1.84 1.06 3.11 131 
5 1177 1503 15622 1434 116 59.5 64.7 6.45 19983  107 766 28.2 1.87 1.07 3.39 907 
6 1168 2038 14355 1474 116 60.3 70.5 6.45 19288  145 704 29.0 1.87 1.08 3.70 884 
7 1104 150 1691 1419 114 59.3 59.8 5.93 4602  11 83 27.9 1.84 1.06 3.14 127 
8 1162 185 2512 1424 115 59.5 63.0 6.44 5526  13 123 28.0 1.85 1.07 3.31 170 
9 1167 210 13612 1432 116 59.4 66.2 6.44 16669  15 667 28.1 1.87 1.07 3.48 717 
10 1134 163 4475 1428 115 59.5 61.9 6.45 7443  12 219 28.1 1.86 1.07 3.25 265 
11 1179 380 12727 1424 115 59.4 66.2 6.44 15957  27 624 28.0 1.85 1.07 3.48 685 
12 1136 219 5231 1430 115 59.5 61.0 6.39 8257  16 256 28.1 1.84 1.07 3.20 306 
13 1145 189 3496 1424 115 59.4 62.9 6.43 6497  13 171 28.0 1.85 1.07 3.30 219 
14 1175 1265 13422 1460 116 59.4 71.5 6.46 17575  90 658 28.7 1.86 1.06 3.76 783 
15 1168 242 15440 1434 115 59.7 64.0 6.45 18529  17 757 28.2 1.86 1.07 3.36 808 
16 1107 155 2017 1425 115 59.6 60.1 6.27 4946  11 99 28.0 1.85 1.07 3.15 144 
17 1167 971 13656 1434 116 59.6 64.0 6.45 17474  69 669 28.2 1.87 1.07 3.36 773 
18 1153 199 2940 1422 115 59.3 60.1 6.34 5954  14 144 27.9 1.86 1.06 3.15 192 
19 1178 219 13834 1431 115 59.6 64.0 6.45 16907  16 678 28.1 1.86 1.07 3.36 728 
20 1105 161 1797 1424 115 61.6 61.7 6.34 4731  11 88 28.0 1.85 1.10 3.24 134 
21 1108 159 2094 1428 115 59.5 59.7 6.40 5030  11 103 28.1 1.85 1.07 3.14 148 
22 1104 145 1691 1419 114 59.2 58.9 5.93 4597  10 83 27.9 1.84 1.06 3.09 127 
23 1144 186 5058 1425 115 59.8 62.8 6.44 8058  13 248 28.0 1.85 1.07 3.30 295 
24 1171 1625 12600 1439 116 59.5 64.6 6.45 17082  115 618 28.3 1.86 1.07 3.39 768 
25 1161 168 2301 1431 115 59.4 62.6 6.36 5305  12 113 28.1 1.85 1.07 3.29 159 
26 1175 1189 12794 1431 115 59.4 66.5 6.45 16837  84 627 28.1 1.86 1.07 3.49 746 
27 1165 448 14217 1433 115 59.5 64.4 6.45 17509  32 697 28.2 1.86 1.07 3.38 763 
28 1104 145 1691 1419 114 59.2 58.9 5.93 4597  10 83 27.9 1.84 1.06 3.09 127 
29 1143 221 11844 1429 115 59.8 64.4 6.43 14883  16 581 28.1 1.85 1.07 3.38 631 
30 1152 187 4596 1423 115 59.4 61.5 6.43 7599  13 225 28.0 1.85 1.06 3.23 273 
31 1174 935 12638 1426 115 59.5 66.5 6.45 16422  66 619 28.0 1.86 1.07 3.49 720 
32 1164 402 13076 1429 115 59.4 64.6 6.45 16317  29 641 28.1 1.85 1.07 3.39 704 
33 1166 586 13747 1433 116 59.6 64.3 6.45 17178  42 674 28.2 1.86 1.07 3.38 750 
34 1179 411 14285 1433 116 59.4 64.8 6.44 17555  29 700 28.2 1.86 1.07 3.40 764 
35 1141 436 8550 1427 115 59.6 63.9 6.44 11800  31 419 28.1 1.85 1.07 3.36 484 
36 1171 769 13222 1432 116 59.6 65.2 6.44 16842  55 648 28.2 1.86 1.07 3.42 737 
37 1167 194 6417 1425 115 59.6 63.8 6.44 9448  14 315 28.0 1.85 1.07 3.35 363 
38 1151 193 5283 1428 116 59.4 62.3 6.45 8299  14 259 28.1 1.87 1.07 3.27 307 
39 1164 341 12464 1428 116 59.8 63.3 6.45 15641  24 611 28.1 1.86 1.07 3.32 669 
40 1177 2126 14906 1455 121 59.4 78.0 6.46 19930  151 731 28.6 1.95 1.07 4.09 917 
41 1169 2006 13705 1441 116 60.3 69.1 6.45 18573  142 672 28.3 1.86 1.08 3.63 849 
42 1153 182 2865 1422 115 59.3 60.1 6.29 5863  13 140 27.9 1.86 1.06 3.15 187 
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Fig. 1. Distribution of GHG emissions reduction for each input in eggplant production. 
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