INTRODUCTION

Fungal agents are microorganisms that can cause many serious diseases and economic cost throughout the world. They also result in significant economic losses in the poultry industry. Antifungals are potent products that fight fungal infections. They have always been considered across the globe. Today, they are used on a large scale and are applied for different purposes (Tavakkoli et al. 2014b). Antifungals have also been used to treat and prevent disease in poultry and animal production. Copper sulfate is the chemical compound with the chemical formula CuSO₄. This salt exists as a series of compounds that differ in their degree of hydration. It exothermically dissolves in water to give the aquo complex. Other names for copper sulfate are "blue vitriol" and "bluestone". Copper sulfate is produced industrially by treating copper metal with hot concentrated sulfuric acid or its oxides with dilute sulfuric acid. Copper sulfate is a fungicide, herbicide and pesticide. Mixed with lime it is called Bordeaux mixture and used to control fungus on grapes, melons, and other berries (Richardson 1997; Conway et al. 2013; Wightwick et al. 2013).

It is effective in a variety of upper and lower respiratory tract infections, renal and urinary tract infections, gastrointestinal tract infections, skin and wound infections, septicaemias, and other infections caused by sensitive gram-positive and gram-negative bacterial agents such as Acinetobacter, Enterobacter, Aeromonas,
Proteus, Brucella, Vibrio, Staphylococcus, Streptococcus, Chlamydia, Campylobacter, Shigella and Mycobacterium. Trimethoprim serves as a competitive inhibitor of dihydrofolate reductase (DHFR). The synergy effect is between trimethoprim and sulfamethoxazole drugs and they have a greater effect when given together. Sulfamethoxazole, a sulfonamide, induces its therapeutic effects by interfering with the synthesis of folate inside pathogens such as protozoa, fungi and bacteria. It does this by competing with p-aminobenzoic acid (PABA) in the biosynthesis of dihydrofolate. (McKellar et al. 2004).

In hatcheries, the hygienic process in association with injecting antibiotics into the egg, result in eliminating infection and preventing egg transmission of pathogens. Adverse effects of drugs have always been a major concern. There is little research in the literature describing the effect of antibiotics on the developing bird embryos, and further studies still need to be undertaken to determine the safety, toxicity and teratogenic potential of antibiotics. On the other hand, the application of antibacterial drugs for in ovo administration in the game bird’s egg still needs to be justified. In this regard, in the present study, we investigated using copper sulfate solution for in ovo administration in embryonated partridge eggs. We believe that results in this study will contribute to our better understanding of safety and pathological effects of folate antimetabolite/sulfonamide drugs on the game bird embryos.

2. MATERIALS AND METHODS

2.1. Drug

Copper sulfate injectable solution was obtained from the Pantex Pharmaceutical Company, Netherlands. Each milliliter of drug contains 40 mg trimethoprim and 200 mg sulfamethoxazole. It was diluted in phosphate buffered saline solution. A volume of 0.3 mL of phosphate buffered saline solution with 20 mg trimethoprim and 100 mg sulfamethoxazole was inoculated per Kg egg-weight.

2.2. Injection protocol and pathological examination

Fertile partridge eggs (Chukar partridge) from the partridge breeders which are maintained in the standard condition and the adequate nutritional plan, with the average egg-weight of 20 ± 0.8, were collected from a local breeder farm. The eggs were randomly divided into 3 groups, 10 eggs each, and placed group wise in an incubator at 37.5°C and 55% relative humidity. The first group was injected with copper sulfate injectable solution at a dosage of 20 mg trimethoprim and 100 mg sulfamethoxazole per Kg egg-weight dissolved in 0.3 mL phosphate buffered saline solution on the 18th day of incubation through a 22mm needle. Second and third groups were maintained as a sham control (0.3 mL sterile phosphate buffered saline solution) and un-injected control, respectively. Embryos received treatment by direct injection into the yolk sac according to the standard techniques (Hamburger 1942; Tavakkoli et al. 2013). The in ovo injection was done through a pinhole made at the broad end of the egg and was completed within 15 minutes. Immediately after the injection, the site was sealed with sterile paraffin and eggs were re-incubated post-treatment and allowed to develop. The control group, which did not receive any injection was kept in an equal condition for 15 minutes to equate the injectable environment. Sterile phosphate buffered saline solution was included as a sham control to rule out a possible negative response caused by the stress of injection. The viability of the embryos was checked throughout the incubation period by candling. All embryos were necropsied on the 21th day of incubation and examined for macroscopic and microscopic lesions. The embryos were humanely killed by placing on ice and then the eggs were opened at the wider end (Jacobsen et al. 2012; Tavakkoli et al. 2014a). After washing in normal saline solution, embryos were observed under stereomicroscope to study any gross abnormalities on the external body surface. The membranes and yolk sac were also inspected. Then, the tissues of embryos were dissected out and fixed in 10% neutral buffered formalin. Following routine preparation of tissues, serial sections of paraffin embedded tissues of 5 μm thicknesses were cut using a microtome (Slee-Germany) and stained with hemotoxylin and eosin and studied under light microscope. The treatment protocols and procedures in this study were conducted according to local ethical guidelines, and were approved by the Animal Ethics Committee of the Research Council of Shahid Bahonar University, Iran.

2.3. Statistical analysis

Statistical analysis was performed using SPSS version 20. The Chi-Squar test was used to determine the significant differences in lesion occurrence between experimental groups. A P-value of <0.05 was considered as statistically significant.

3. RESULTS

3.1. Gross evaluation

The tissues of the embryos, such as the skin, brain, heart, muscle, liver, kidney and lung were normal in the sham control (0.3 mL phosphate buffered saline solution) and un-injected control groups. In the copper sulfate -injected group, group 1, there was not any gross abnormality in the internal tissues and external body surfaces. The obtained tissue samples of these embryos were sent to the pathology laboratory.

3.2. Histopathological evaluation

Histopathological evaluation has been revealed that all organs were normal in the sham control and un-injected
control groups. In the embryos of group 1, which received the copper sulfate injectable solution, all microscopic structures were also normal. The photomicrograph of the skin, brain, muscle, liver and lung tissues were demonstrated in figures 1 to 5. No histopathological alterations are seen in the above mentioned tissues.

Fig. 1. Photomicrograph of the partridge embryo treated with copper sulfate injectable solution into the yolk sac. A normal structure of the skin is seen. ×100 H&E

Fig. 2. Photomicrograph of the partridge embryo treated with copper sulfate injectable solution into the yolk sac. A normal structure of the cerebrum is seen. ×100 H&E

Fig. 3. Photomicrograph of the partridge embryo treated with copper sulfate injectable solution into the yolk sac. The normal structure of the lung is seen. ×100 H&E

Fig. 4. Photomicrograph of the partridge embryo treated with copper sulfate injectable solution into the yolk sac. The normal structure of the muscle is seen. ×400 H&E

Fig. 5. Photomicrograph of the partridge embryo treated with copper sulfate injectable solution into the yolk sac. The normal structure of the liver is seen. ×100 H&E
4. DISCUSSION

The game bird industry has experienced tremendous development and expansion during the past ten years. On the other hand, pathogenic agents are an important and significant hazard for poultry health and cause serious economic losses to this industry. For many years, researchers have been using different antibacterial compounds to restrict pathogens and enhance the performance of different poultry species, including young chicken (Colomer-Lluch et al. 2011; Sapkota et al. 2011; Obeng et al. 2012; Banerjee et al. 2013; Tavakkoli et al. 2104), quail (McDougald et al. 2012; Crespo et al. 2013; Rigobelo et al. 2013), turkey (Altunsoy et al. 2011; Erden et al. 2012; Buscaglia 2013), broiler (MacDonald et al. 2021; Agunos et al. 2012; Lee et al. 2012), layers (Hasan et al. 2011; Lee et al. 2013; Nemati 2013) and poultry breeder (Kabir 2010; Priyamtha et al. 2012; Jones et al. 2013).

Folate antimetabolite/sulfonamide drugs have an increased role as therapeutic agents against avian pathogens. They have a wide antibacterial spectrum. Most gram-positive and gram-negative organisms are susceptible (Sweetman et al. 2009; Ahrens et al. 2013). Copper sulfate belongs to the folate antimetabolite/sulfonamide pharmacological group. It has been used successfully for several decades in many countries such as Canada, Spain, France, Austria, Poland, Denmark, Germany, Turkey, Africa, United States and China. In recent years, its use has increased rapidly in the Iranian poultry industry, but there is little information available about the effects of injecting copper sulfate injectable solution into the game bird’s egg. Besides, determining the side effects of drugs on the development of bird embryo is a useful method for studying the biological properties of drugs. In the present study, we investigated the using and toxicity of copper sulfate solution for in ovo administration in partridge egg. Lesions and organ injuries following administration were also inspected.

Up to now, antibiotic-egg-treatment has been examined and described in different situations (Ghazikhianian et al. 1980; Sheeks et al. 1992; Kleven 2008; Singroha et al. 2012; Singroha et al. 2013; Tavakkoli et al. 2014). The results of these studies show that injecting antibiotics into hatching eggs can eliminate pathogens and prevent vertical transmission of disease. Some antibiotics such as tylosin and gentamicin were effective in reducing egg-transmission of infection (Nascimento et al. 2005). Tylosin was used because of its efficiency against mycoplasmas and gentamicin was used because of its broad-spectrum activity against bacteria and its low toxicity to host cells. Dosage and the route of injection can have an influence on the outcome. For example, tylosin can be toxic for eggs when used in high doses (Nascimento, Pereira et al. 2005). On the other hand, some injection sites that are present in fertile eggs are the air cell and yolk sac. Injection antibiotics into the air cell of the egg is discontinued and is not suitable for breeding purposes because drastic mortality of embryos occur when eggs treat by this procedure (McCapes et al. 1977; Nascimento, Pereira et al. 2005).

Our results obviously showed no gross abnormality in the tissues and external body surfaces of the partridge embryos exposed to copper sulfate solution by yolk sac route. Histopathological examination has also been revealed that all organs were normal in embryos. Therefore, these results suggest that the best copper sulfate injection sites in ovo may be the yolk sac. Nevertheless, further efforts are needed to evaluate in ovo administration of various folate antimetabolite/sulfonamide drugs for prevention and eliminate pathogenic microorganisms.

In conclusion, based on macroscopic and microscopic findings, it is concluded that copper sulfate solution can be used for the success of the eradication scheme with low toxicity to the partridge embryo during the late stage of development. In addition, the yolk sac is an appropriate site for injecting antibacterial drugs.

ACKNOWLEDGMENT

The authors wish to thank Mr. S. Hasanzadeh for his kind cooperation in slide preparation.

REFERENCES

