Document Type : Original Article

Authors

1 Department of Medical Physics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran

2 Physiology Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran

Abstract

Objective: Different categories are available for estimating of radiation dose. Radioisotopes with the same energy and almost the same physical properties have similar effects. Monte Carlo technique is a computerized method based on mathematical simulation of physical processes. The main purpose of this study is to show that beta particles are not able to penetrate deep into the water. also difference between  GATE and MCNP code is not significant. Methods: In this study, a digital form of the cylinder mathematical phantom was constructed and used with GATE and MCNPX to calculate the phantom dose. The voxel-based anthropomorphic Zubal phantom was used to model a typical adult male. The equivalent effective dose derived for the electrons of Er-169, P-32, and Y-90 with GATE and MCNPX. The results were compared to the HOTSPOT data. Results: The GATE and MCNPX difference was negligible. However, difference at this level is acceptable and we can conclude that GATE produces almost similar results as MCNPX. In this study, we tried to set the physical framework, calculate the penetration depth via dosimetry, using the results of the two simulator codes. In the first part, we applied the results of the HotSpot dosimetry software for validation.Conclusion: The GATE and MCNPX difference was negligible.

Keywords

Assié, K., Gardin, I., Vera, P., Buvat, I. (2005). Validation of the monte carlo simulator GATE for indium-111 imaging. Phys Med Biol, 50(13): 3113-3125.
Balachandran. S., McGuire, L., Flanigan, S., Shah, H., Boyd, C.M. (1985). Bremsstrahlung imaging after 32P treatment for residual suprasellar cyst. Int J of Nuc Med and Biol, 12(3): 215- 221.
Bardies, M., Chatal, J.F. (1999). Absorbed doses for internal radiotherapy from 22 beta-emitting radionuclides: beta dosimetry of small spheres. Phys Med
Biol, 39(6): 961.
Berger, M.J. (1988). Electron stopping powers for transport calculations. Monte Carlo Transport of Electrons and Photons, Springer: 57-80.
Chiavassa, S., Aubineau-Laniece, I., Bitar, A., Lisbona, A., Barbet, J., Franck, D., et al. (2006). Validation of a personalized dosimetric evaluation tool (Oedipe) for targeted radiotherapy based on the monte carlo MCNPX
code. Phys Med Biol, 51(3): 601-616.
Das, T., & Pillai, M. R. A. (2013). Options to meet the future global demand of radionuclides for radionuclide therapy. Nucl Med Biol, 40(1), 23-32.
Eary, J.F., Brenner, W. (2007). Nuclear medicine therapy. Taylor and Francis, New York, London, ISBN-13:9780824728762, Pages: 216.
Hamoudeh, M., Kamleh, M.A., Diab, R., Fessi, H. (2008). Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev, 60:1329-46.
Ito, S., Kurosawa, H., Kasahara, H., Teraoka, S., Ariga, E., Deji, S. (2009). 90Y bremsstrahlung emission computed tomography using gamma cameras. Ann Nucl Med, 23(3):257-267.
Jackson, M. R., Falzone, N., & Vallis, K. A. (2013). Advances in anticancer radiopharmaceuticals. Clin Oncol, 25(10), 604-609.
Jan, S., Benoit, D., Becheva, E., Carlier, T., Cassol, F., Descourt, P., et al. (2011). GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol, 56(4):
881.
Maigne, L., Perrot, Y., Schaart, D.R., Donnarieix, D., Breton, V. (2011). Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV. Phys Med Biol, 56:811.
Mainegra-Hing, E., Rogers, D., Kawrakow, I. (2005). Calculation of photon energy deposition kernels and electron dose point kernels in water. Medical Physics, 32: 685.
Mathew, P., Talbut, D., Frogameni, A., Singer, D., Chrissos, M., Khuder, S., et al. (2000). Isotopic synovectomy with P- 32 in paediatric patients with haemophilia. 6:547-55.
McGoron, A. J. (2002). Radioisotopes in Nuclear Medicine. Proceedings of the Americas Nuclear Energy Symposium, October 16-18, 2002, U.S. Department of Energy, Miami, Florida International University.
Parach, A., Rajabi, H. (2011). A comparison between GATE4 results and MCNP4B published data for internal radiation dosimetry. Nuklearmedizin-Nuclear Medicine, 50(3): 122.
Parach, A.A., Rajabi, H., Askari, M.A. (2011). Assessment of MIRD data for internal dosimetry using the GATE Monte Carlo code. Rad environ biophys, 50(3): 441-450.
Pouget, J. P., Lozza, C., Deshayes, E., Boudousq, V., & Navarro-Teulon, I. (2015). Introduction to radiobiology of targeted radionuclide therapy. Front Med, 2.
Qaim, S.M. (2001). Therapeutic radionuclides and nuclear data. Radiochimica Acta. Int J Chem Aspects Nucl Sc Technol, 89:297.
Rodrigues, P., Trindade, A., Peralta, L., Alves, C., Chaves, A., Lopes, M.C. (2004). Application of GEANT4 radiation transport toolkit to dose calculations in anthropomorphic phantoms. Appl Radiat Isotopes, 61(6): 1451-1461.
Sartor, O., Hoskin, P., & Bruland, Ø. S. (2013). Targeted radio-nuclide therapy of skeletal metastases. Cancer treatment reviews, 39(1), 18-26.
Sgouros, G., & Hobbs, R. F. (2014, May). Dosimetry for radiopharmaceutical therapy. In Semin Nucl Med (Vol. 44, No. 3, pp. 172-178). WB Saunders.
Thomas, D.J. (2012). ICRU report 85: fundamental quantities and units for ionizing radiation. Radiation Protection Dosimetry, 150(4): 550-552.
Volkert, W.A., Goeckeler, W.F., Ehrhardt, G.J., Ketring, A.R. (1991). Therapeutic Radionuclides:Production and Decay Property Considerations. J Nucl Med,32(1): 174-8.
Yoriyaz, H., et al. (2000). Absorbed fractions in a voxelbased phantom calculated with the [small-caps MCNP- 4B] code. Med Phys, 27: 1555.
Zaidi, H. Erwin, W.D. (2007). Quantitative Analysis in Nuclear Medicine Imaging. J Nucl Med, 48(8): 1401.
Zubal, I.G,, Harrell, C.R., Smith, E.O., Rattner, Z., Gindi, G., Hoffer, P.B. (1994). Computerized three-dimensional segmented human anatomy. Med Phys, 21(2) :299.