Document Type : Original Article


Department of Biology, Urmia Branch, Islamic Azad University, Urmia, Iran



Background: The study for new antibiotics is of great importance in investigating programs around the worldwide for pharmaceutical, industrial and agricultural applications. Streptomyces like filamentous soil bacteria are used as an essential biological tool for their ability to producing a wide range of new secondary metabolites such as antibiotics. Identification and isolation of new species seemed to be important in the presentation of significantly adequate antibiotics, because antibiotic resistance infectious diseases are the second leading cause of death worldwide, inducing research and development of new antibiotics. Therefore, in this study, we aimed to isolate and characterize novel strains of Streptomyces spp. with high antibiotic production ability.
Methods: Soil samples were collected randomly from primitive soils of Urmia, West Azerbaijan province, from Iranin 2019. The isolates of Streptomyces spp. were carried out in a specific culture medium. Their primary and secondary antibacterial activity againstgram-positive bacteria Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus, alsogram-negative Escherichia coli was checked out. Finally, the antibacterial properties of strains based on 16S rRNA sequencing were analyzed by MEGA X software.
Results: Totally, 150 colonies were isolated from four soil collected samples. In the primary screening of 10 isolates, insulated antibacterial activity and in the secondary screening, 3 examples were selected. The microorganisms showed antibacterial activity. Sequencing of the 16S rRNA gene from C-B1-12, D-D3-7, and C-Y2-2 isolates showed similarity to Streptomyces indiaensis.
Conclusions: The results of this study indicated that there are new isolates in the soil samples of West Azerbaijan province that are capable of producing new antibacterial agents.

Graphical Abstract

Antibacterial activity of metabolites isolated from Streptomyces SSp. On Soil Sample of West Azerbaijan, Iran


Main Subjects

1. Fung C P, Chang F Y, Lee S C, Hu B S, Kuo B I, Liu C Y, Ho M, Siu L K. (2002). A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut, 50(3): 420-424. [google.scholar]

2. Mohamed D S, El-Baky A, Mahmoud R, Sandle T, Mandour S A, Ahmed E F. (2020). Antimicrobial Activity of Silver-Treated Bacteria against Other Multi-Drug Resistant Pathogens in Their Environment. Antibiotics, 9(4): 181.   [google.scholar]

3. Rajan B M, Kannabiran K. (2014). Extraction and Identification of Antibacterial Secondary Metabolites from Marine Streptomyces sp. VITBRK2. Int J Mol Cell Med, 3(3): 130-137.[google.scholar]

4. Singh N, Rai V, Tripathi C. (2012). Production and optimization of oxytetracycline by a new isolate Streptomyces rimosus using response surface methodology. Medicinal Chemistry Research, 21(10): 3140-3145. [google.scholar]

5. Tripathi C, Praveen V, Singh V, Bihari V. (2004). Production of antibacterial and antifungal metabolites by Streptomyces violaceusniger and media optimization studies for the maximum metabolite production. Medicinal Chemistry Research, 13(8-9): 790-799.   [google.scholar]

6. Crits-Christoph A, Diamond S, Butterfield C N, Thomas B C, Banfield J F. (2018). Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature, 558(7710): 440-444.[google.scholar]

7. Sharma M, Dangi P, Choudhary M. (2014). Actinomycetes: source, identification, and their applications. Int J Curr Microbiol App Sci, 3(2): 801-832.[google.scholar]

8. Narayana K J, Vijayalakshmi M. (2009). Chitinase production by Streptomyces sp. ANU 6277. Brazilian Journal of Microbiology, 40(4): 725-733.   [google.scholar]

9. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald G F, Chater K F, van Sinderen D. (2007). Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev, 71(3): 495-548. 10.1128/mmbr.00005-07  [google.scholar]

10. Ganesan P, Reegan A D, David R H A, Gandhi M R, Paulraj M G, Al-Dhabi N A, Ignacimuthu S. (2017). Antimicrobial activity of some actinomycetes from Western Ghats of Tamil Nadu, India. Alexandria journal of medicine, 53(2): 101-110.  [google.scholar]

11. Sajid I, Shaaban K A, Hasnain S. (2011). Identification, isolation and optimization of antifungal metabolites from the Streptomyces Malachitofuscus ctf9. Braz J Microbiol, 42(2): 592-604.  [google.scholar]

12. Maleki H, Dehnad A, Hanifian S, Khani S. (2013). Isolation and Molecular Identification of Streptomyces spp. with Antibacterial Activity from Northwest of Iran. Bioimpacts, 3(3): 129-134.  [google.scholar]

13. Singh V, Haque S, Khare S, Tiwari A K, Katiyar D, Banerjee B, Kumari K, Tripathi C. (2018). Isolation and purification of antibacterial compound from Streptomyces levis collected from soil sample of north India. PloS one, 13(7): e0200500.  [google.scholar]

14. El-Shatoury S, Abdulla H, El-Karaaly O, El-Kazzaz W, Dewedar A. (2006). Bioactivities of endophytic actinomycetes from selected medicinal plants in the World Heritage Site of Saint Katherine Egypt. Int J Bot, 2(3): 307-312.  [google.scholar]

15. Oskay A M, Üsame T, Cem A. (2004). Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. African journal of Biotechnology, 3(9): 441-446.  [google.scholar]

16. Otoguro M, Hayakawa M, Yamazaki T, Tamura T, Hatano K, Iimura Y. (2001). Numerical phenetic and phylogenetic analyses of Actinokineospora isolates, with a description of Actinokineospora auranticolor sp. nov. and Actinokineospora enzanensis sp. nov. Actinomycetologica, 15(2): 30-39.  [google.scholar]

17. Bohloli Khiavi R. (2017). Methods for in vitro evaluating antimicrobial activity: A review. Laboratory & Diagnosis, 9(35): 43-53.  [google.scholar]

18. Singh L S, Baruah I, Bora T. (2006). Actinomycetes of Loktak habitat: isolation and screening for antimicrobial activities. Biotechnology, 5(2): 217-221.  [google.scholar]

19. Rai K, Khadka S, Shrestha B. (2018). Actinomycetes: Isolation, Characterization and Screening for Antimicrobial Activity from Different Sites of Chitwan, Nepal. International Journal of Microbiology and Biotechnology, 3(1): 25-30.  [google.scholar]

20. Arasu M V, Duraipandiyan V, Agastian P, Ignacimuthu S. (2008). Antimicrobial activity of Streptomyces spp. ERI-26 recovered from Western Ghats of Tamil Nadu. Journal de Mycologie Medicale, 18(3): 147-153.  [google.scholar]

21. Bauer A W, Kirby W M, Sherris J C, Turck M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol, 45(4): 493-496.  [google.scholar]

22. Atashpaz S, Khani S, Barzegari A, Barar J, Vahed S Z, Azarbaijani R, Omidi Y. (2010). A robust universal method for extraction of genomic DNA from bacterial species. Mikrobiologiia, 79(4): 562-566.  [google.scholar]

23. Weisburg W G, Barns S M, Pelletier D A, Lane D J. (1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol, 173(2): 697-703.  [google.scholar]

24. Tamura K, Nei M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol, 10(3): 512-526.  [google.scholar]

25. Saitou N, Nei M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4(4): 406-425.  [google.scholar]

26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol, 30(12): 2725-2729.  [google.scholar]

27. Hay S I, Rao P C, Dolecek C, Day N P J, Stergachis A, Lopez A D, Murray C J L. (2018). Measuring and mapping the global burden of antimicrobial resistance. BMC Med, 16(1): 78.  [google.scholar]

28. Nicholson M D, Antal T. (2019). Competing evolutionary paths in growing populations with applications to multidrug resistance. 15(4): e1006866.  [google.scholar]

29. Huang Z, Hu Y, Shou L, Song M. (2013). Isolation and partial characterization of cyclic lipopeptide antibiotics produced by Paenibacillus ehimensis B7. BMC Microbiol, 13: 87.  [google.scholar]

30. Taechowisan T, Chanaphat S, Ruensamran W, Phutdhawong W S. (2013). Antibacterial activity of 1-methyl ester-nigericin from Streptomyces hygroscopicus BRM10; an endophyte in Alpinia galanga. Journal of Applied Pharmaceutical Science, 3(5): 14-28.  [google.scholar]

31. Shao K, Bai C, Cai J, Hu Y, Gong Y, Chao J, Dai J, Wang Y, Ba T, Tang X. (2019). Illumina Sequencing Revealed Soil Microbial Communities in a Chinese Alpine Grassland. Geomicrobiology Journal, 36(3): 204-211.  [google.scholar]

32. Pandey B, Ghimire P, Agrawal V P. (2004). Studies on the antibacterial activity of the Actinomycetes isolated from the Khumbu Region of Nepal. J. Biol. Sci, 23: 44-53.  [google.scholar]

33. Oh S-T, Lee J-J, Lee J-Y, Kim J-K, Yang S-Y, Kim Y-S, Song M-D. (2005). Isolation and identification of Streptomyces sp. producing anti-vancomycin resistant Staphylococcus aureus substance. Microbiology and Biotechnology Letters, 33(2): 90-95.  [google.scholar]

34. Higginbotham S J, Murphy C D. (2010). Identification and characterisation of a Streptomyces sp. isolate exhibiting activity against methicillin-resistant Staphylococcus aureus. Microbiological research, 165(1): 82-86.  [google.scholar]

35. Mondal S, Rai V R. (2019). Molecular profiling of endophytic Streptomyces cavourensis MH16 inhabiting Millingtonia hortensis Linn. and influence of different culture media on biosynthesis of antimicrobial metabolites. The Science of Nature, 106(9-10): 51-62.  [google.scholar]

36. Singh L, Mazumder S, Bora T. (2009). Optimisation of process parameters for growth and bioactive metabolite produced by a salt-tolerant and alkaliphilic actinomycete, Streptomyces tanashiensis strain A2D. Journal de Mycologie Médicale, 19(4): 225-233.   [google.scholar]