Document Type : Original Article


1 Department of Biochemistry, Payame Noor University, Isfahan, Iran

2 Department of Biology, Payame Noor University, Assistant Professor, Isfahan, Iran


Background: Multiple sclerosis (MS) is an autoimmune disease in which a deficiency of vitamin B12 along with folic acid can contribute to its progression. The aim of this study was to investigate the role of these two vitamins in altering myelin base protein (MBP) in the MS model of rats and also to measure some ionic parameters in serum.
Methods: Brain histology was followed by analysis of the relationship between vitamin B12 treatment or folic acid and MBP as well as changes in total protein concentration (TPC). MBP expression was assessed by SDS-PAGE and serum levels of iron. Copper and zinc were also assessed by Duncan test.
Results: MBP expression in cortical extract was increased by simultaneous treatment with vitamin B12 and folic acid compared with the groups treated individually. Histological examinations showed that the highest level of tissue repair was in the same group. There was a significant difference between cortical TPC in the control and treatment of vitamin B12 and folic acid, but serum levels of Fe, Zn and Cu were not significantly different between the groups.
Conclusion: It can be concluded that the combination of these vitamins increases the expression of MBP protein.

Graphical Abstract

The Effect Of Vitamin B12 and Folic Acid on Multiple Sclerosis in Mice


Main Subjects

1.  Zhang Y, Zhang H, Wang L, Jiang W, Xu H, Xiao L, Zhang R. (2012). Quetiapine enhances oligodendrocyte regeneration and myelin repair after cuprizone-induced demyelination. Schizophr Res, 138(1): 8-17.
2.  Domingues H S, Portugal C C, Socodato R, Relvas J B. (2016). Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Frontiers in cell and Dev Bio, l4: 71.
3.  Green R, Allen L H, Bjørke-Monsen A L, Brito A, Guéant J L, Miller J W, Molloy A M, Nexo E, Stabler S, Toh B H. (2017). Erratum: Correction: Vitamin B 12 deficiency (Nature reviews. Disease primers (2017) 3 (17040)). Nature reviews. Disease primers, 3: Article number: 17040.
4.  Schroecksnadel K, Leblhuber F, Frick B, Wirleitner B, Fuchs D. (2004). Association of hyper homocysteinemia in, Alzheimer disease with elevated neopterin levels. Alz Dis Assoc Dis, 18(3): 129-133.
5.  Cosar A, İpcioğlu O M, Özcan Ö, Gültepe M. (2014). Folate and homocysteine metabolisms and their roles in the biochemical basis of neuropsychiatry. Turk J Med Sci, 44(1): 1-9.
6.  Reynolds E. (2006). Vitamin B12, folic acid, and the nervous system. The Lancet Neurol, 5(11): 949-960.
7.  Shao Y, Tan B, Shi J, Zhou Q. (2019). Methotrexate induces astrocyte apoptosis by disrupting folate metabolism in the mouse juvenile central nervous system. Toxicol Lett, 301: 146-156.
8. Miller A, Korem M, Almog R, Galboiz Y. (2005). Vitamin B12, demyelination, remyelination and repair in multiple sclerosis. Journal of the neurological sciences, 233(1-2), 93-97.
9. Nozari E, Ghavamzadeh S, Razazian N. (2019). The effect of vitamin B12 and folic acid supplementation on serum homocysteine, anemia status and quality of life of patients with multiple sclerosis. Clinical nutrition research, 8(1): 36.
11. Zhu Y, He Z Y, Liu H N. (2011). Meta-analysis of the relationship between homocysteine, vitamin B12, folate, and multiple sclerosis. Journal of Clinical Neuroscience, 18(7): 933-938.
12. Hamilton M S, Blackmore S. (2012). Investigation of megaloblastic anaemia—cobalamin, folate, and metabolite status. In Dacie and Lewis Practical Haematology (pp. 201-228). Churchill Livingstone.
13. Wade D T, Young C A, Chaudhuri K R, Davidson D L W. (2002). A randomised placebo controlled exploratory study of vitamin B-12, lofepramine, and L-phenylalanine (the “CariLoder regime”) in the treatment of multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry, 73(3): 246-249.
14.       Goldberg J M, Loas A, Lippard S J. (2016). Metalloneurochemistry and the pierianspring:‘shallow draughts intoxicate the brain’. Isr J Chem, 56(9-10): 791-802.
15.       Gellein K, Skogholt J H, Aaseth J, Thoresen G B, Lierhagen S, Steinnes E, Flaten T.P. (2008). Trace elements in cerebrospinal fluid and blood from patients with a rare progressive central and peripheral demyelinating disease. J NeurolSci, 266(1-2): 70-78
16.       Ericsson C, Peredo I, Nistér M. (2007). Optimized protein extraction from cryopreserved brain tissue samples. ActaOncol, 46(1): 10-20.
17.       Acs P, Selak M, Komoly S, Kalman B. (2013). Distribution of oligodendrocyte loss and mitochondrial toxicity in the cuprizone-induced experimental demyelination model. J Neuro Immunol, 262(1-2): 128-131.
18.       Miller A, Korem M, Almog R, Galboiz Y. (2005). Vitamin B12, demyelination, remyelination and repair in multiple sclerosis. J Neurol Sci, 233(1–2): 93–97.
19.       Khosravi-Largani M, Pourvali-Talatappeh P, Rousta M, Karimi-Kivi A M, Noroozi E, Mahjoob A, Asaadi Y, Shahmohammadi A, Sadeghi S, Shakeri S, Ghiyasvand K, Tavakoli-Yaraki M. (2018). A review on potential roles of vitamins in incidence, progression, and improvement of multiple sclerosis. Neurological Sci, 10: 37–44.
20.       Obeid R, McCaddon A, Herrmann, W. (2007). The role of hyperhomocysteinemia and Bvitamin deficiency in neurological and psychiatric diseasesClin. Chem Lab Med, 45(12): 1590–1606.
21.       Shane B. (2008). Folate and vitamin B12 metabolism: overview and interaction with riboflavin, vitamin B6, and polymorphisms. Food and nutrition bulletin, 29(2_suppl1), S5-S16.
22.       Kocer B, Engur S, AK F, Yilmaz M. (2009). Serum vitamin B12, folate, and homocysteine levels and their association with clinical and electrophysiological parameters in multiple sclerosis. J Clin Neuro sci, 16(3): 399–403.
23.       Moghaddasi M, Mamarabadi M, Mohebi N, Razjouyan H, Aghaei M. (2013). Homocysteine vitamin B12 and folate levels in Iranian patients with Multiple Sclerosis: a case control study. Clin. Neurol. Neurosurg, 115(9): 1802–1805.
24.       Zhu Y, He Z Y, Liu H N. (2011). Meta-analysis of the relationship between homocysteine, vitamin B (1) (2), folate, and multiple sclerosis. J Clin Neuro sci, 18(7): 933–938.
25.       Nemazannikova N, Mikkelsen K, Stojanovska L, Blatch G L, Apostolopoulos V. (2018). Is there a link between vitamin B and multiple sclerosis?. Med Chem, 14(2): 170–180.
26.       Bowling A C, Stewart T M. (2003). Current complementary and alternative therapies for multiple sclerosis. Curr Treat Option, 5(1): 55-68.
27.       Stabler S P (2013). "Vitamin B12 deficiency." New Engl J Med, 368(2): 149-160.
28.       Calderón‐Ospina C A, Nava‐Mesa M O (2020). B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS neuroscience & therapeutics, 26(1): 5-13.
29.       Bitarafan S, Harirchian M H, Nafissi S, Sahraian M A, Togha M, Siassi F, Chamary M. (2014). Dietary intake of nutrients and its correlation with fatigue in multiple sclerosis patients. Iranian j of Neurol, 13(1): 28.
30.       Scalabrino G, Veber D, Mutti E. (2008). Experimental and clinical evidence of the role of cytokines and growth factors in the pathogenesis of acquired cobalamin-deficient leukoneuropathy. Brain Res Rev, 59(1): 42-54.
31.       .Stankiewicz J M, Neema M, Ceccarelli A. (2014). Iron and multiple sclerosis. Neuro biolaging, 35: S51-S58.
32.       Stankiewicz J M, Brass S D (2009). Role of iron in neurotoxicity: a cause for concern in the elderly? .Curr. Opin. Clin. Nutr. Metab, 12: 22-29.
33.       Forte G, Visconti A, Santucci S, Ghazaryan A, Figà-Talamanca L, Cannoni S, Alimonti A. (2005). Quantification of chemical elements in blood of patients affected by multiple sclerosis. Ann dell'Istitutosuperiore di sanita, 41(2): 213-216.
34.       Abo-Krysha N, Rashed L. (2008). The role of iron dysregulation in the pathogenesis of multiple sclerosis: an Egyptian study. MultScler J, 14(5): 602-608.
35.       Visconti A, Cotichini R, Cannoni S, Bocca B, Forte G, Ghazaryan A, Salvetti M. (2005). Concentration of elements in serum of patients affected by multiple sclerosis with first demyelinating episode: a six-month longitudinal follow-up study. Annali dell'Istituto superiore di sanita, 41(2): 217-222.
36.       Van Horssen J, Witte M E, Schreibelt G, De Vries H E (2011). Radical changes inmultiple sclerosis pathogenesis. Biochim. Biophys. Acta., 1812: 141–150.
37.       Aspli K T, Flatenb T P, Per M, Roos C D, TrygveHolmøye F, Jon H, Skogholt g,  Aaseth J. (2015). Iron and copper in progressive demyelination–New lessonsfromSkogholt’s disease. J. Trace. Elem. Med. Biol., 31: 183–187.
38.       Srinivasan S, &Avadhani N G (2012). Cytochrome c oxidase dysfunction in oxidative stress. Free Radical Biology and Medicine, 53(6), 1252-1263.
39.       Tamburo E, Varrica D, Dongarrà G, Grimaldi L M E (2015). Trace elements inscalp hair samples from patients with relapsing-remitting multiple sclerosis. PLoS ONE, 10: 122-142.
40.       Palm R, Hallmans G. (1982). Zinc and copper in multiple sclerosis. J NeurolNeurosurg Psychiatry, 45: 691–698.
41.       Johnson S. (2000). The possible role of gradual accumulation of copper, cadmium, lead and iron and gradual depletion of zinc, magnesium, selenium, vitamins B2, B6, D, and E and essential fatty acids in multiple sclerosis. Med Hypotheses, 55(3): 239-241.
42. Socha K, Karpińska E, Kochanowicz J, Soroczyńska J, Jakoniuk M, Wilkiel M, Borawska M H (2017). Dietary habits; concentration of copper, zinc, and Cu-to-Zn ratio in serum and ability status of patients with relapsing-remitting multiple sclerosis. Nutrition, 39 :76-81.
43. Salari S, Khomand P, Arasteh M, Yousefzamani B, Hassanzadeh K. (2015). Zinc sulphate: A reasonable choicefor depression management in patients with multiple sclerosis:A randomized, double-blind, placebo-controlled clinical trial. Pharmacological Reports, 67: 606–609.
44. Bredholt M, Frederiksen J L. (2016). Zinc in multiple sclerosis: A systematic review and meta-analysis. Asn Neuro, 8(3): 1759091416651511.
45. Zatta P, Drago D, Bolognin S, Sensi S L. (2009). Alzheimer's disease, metal ions and metal homeostatic therapy, Trends. Pharmacol. Sci., 30(7): 346-355.