Document Type : Original Article

Authors

1 KEBBI STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY ALIERO

2 BIOCHEMISTYR, FACULTY OF LIFE SCIENCE KEBBI STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY, ALIERO, NIGERIA

3 BIOCHEMISTRY, LIFE SCIENCES, KEBBI STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY, ALIERO, NIGERIA

Abstract

Background: Sterculia setigera is one of the medicinal plants used traditionally to treat various diseases with the insertion of diabetes. Diabetes mellitus is a prolonged metabolic disorder recognized as a hyperglycemia. The present study is aimed at investigating the antidiabetic activity of the methanol stem bark extract of Sterculia setigera.

Methods: LD50 screening was evaluated using standard methods. The sub-chronic effect of Sterculia setigera methanol stem bark extract on body weight, antidiabetic, antioxidant, lipid profile and histopathology were evaluated in Alloxan-induced diabetic rats respectively.

Result: Acute toxicity study of methanol stem bark extract of Sterculia setigera reveal no mortality in the animals at the limit dose of 5000mg/kg during the 14 days observation period. In the invivo study, alloxan was capable of inducing diabetic conditions as there was a significant increase (P<0.05) in the fasting blood glucose (FBG) of the entire induced groups compared to normal control. Groups treated with crude extract of Sterculia setigera (100-400mg/kg) and the standard drug (glibenclamide) showed a significant decrease (P<0.05) in FBg compared to diabetics control. There were significant reductions (P<0.05) in serum TC, TG, VLDL, LDL, CAT, SOD, GPx, Vit E, Vit A, and MDA against diabetic control. On the other hand, significant increments (P<0.05) in body weight and HDL were observed in the treated groups compared to diabetic control diabetic. Histopathological examination showed improvement in the regeneration of pancreatic β-cells islets.

Conclusion: In conclusion, Sterculia setigera stem bark extract exhibit hypoglycaemic, hypolipidemic, and antioxidant effects justifying its ethnomedicinal use for the treatment of diabetes.

Graphical Abstract

Antidiabetic, Antioxidant and Hypolipidemic potentials of Sterculia Setigera Methanol Stem Bark Extract in Alloxan-Induced Diabetic Rats

Keywords

Main Subjects

  1. Singh P, Jayaramaiah R H, Agawane S B, Vannuruswamy G, Korwar A M, Anand A, Dhaygude V S, Shaikh M L, Joshi R S, Boppana R, Kulkarni M J. (2016). Potential dual role of eugenol in inhibiting advanced glycation end products in diabetes: proteomic and mechanistic insights. Scientific Reports, 6: 18798. [Crossref], [Google scholar], [Publisher]
  2. Tupe R S, Kulkarni A, Adeshara K, Shaikh S, Shah N, Jadhav A. (2015). Syzygium jambolanum and Cephalandra indica homeopathic preparations inhibit albumin glycation and protect erythrocytes: an in vitro study. Homeopathy, 104(3): 197-204. [Crossref], [Google scholar], [Publisher]
  3. Al-Ahmed A, Khalil E H. (2019). Antidiabetic Activity of Terfeziac laveryi; An in vitro and in vivo Study. Biomedical and Pharmacology Journal, 12(2): 603-608. [Crossref], [Google scholar], [Publisher]
  4. Adedapo A D, Adedeji W A, Adeosun A M, Olaremi J, Okunlola C K. (2016). Antihypertensive drug use and blood pressure control among in-patients with hypertension in a Nigerian tertiary healthcare centre. International Journal of Basic and Clinical Pharmacology, 5(3): 696–701. [Crossref], [Google scholar], [Publisher]
  5. Adeosun A M, Asejeje F O, Ighodaro O M, Oluwole B A, Akinloye O A. (2020). Hypoglycemic, antidyslipidemic, and antioxidant activities of methanol extract of Struchium sparganophora leaves in alloxan-induced oxidative stress-mediated diabetes in rats. Futur J Pharm Sci, 6: [Crossref], [Google scholar], [Publisher]
  6. Vishwakarma S L, Rakesh S, Rajani M, Goyal R K. (2010). Evaluation of effect of aqueous extract of Enicostemma littorale Blume. In streptozotocin induced type 1 diabetic rats. Indian J Exp Biol. Biol. Sci, 3(12): 191-195. [Google scholar], [Publisher]
  7. Syamsudin T. (2010). Standardization of extract of Leucaenaleucocephala (lmk) De Wit seeds by α- glucosidase inhibitor. International Journal of Phytomedicine, 2: 430-435. [Crossref], [Google scholar], [Publisher]
  8. Selvi R, Yogananth N. (2016). In vitro evaluation of antidiabetic potential of leaf and stem extracts of Solanum xanthocarpum and Solanum nigrum. J. Adv. Res. 3(12): 191-195. [Crossref], [Google scholar], [Publisher]
  9. Ayodhya S, Kasum S, Anjali S. (2010). Hypoglycaemic activity of different extracts of various herbal plants. Int J Ayurvedia Res Pharm, 1(1): 212-224. [Google scholar], [Publisher]
  10. Elechi N A, Okezie-Okoye C, Abo K A. (2020). Antidiabetic Potentials of Diodia sarmentosa S W (Rubiaceae) Leaves on Alloxan-Induced Diabetic Rats. Saudi Journal of Medical and Pharmaceutical Sciences, 6(9): 622-626. [Crossref], [Google scholar], [Publisher]
  11. El-Bassir A H A, Mohamed O M, Hamdin N I. (2015). Sterculia setigera seeds as food for tilapia fish (Oreochromis niloticus) finger lings. Eur Acad Res, 3(2): 1571–15. [Google scholar], [Publisher]
  12. Tor‐Anyiin T A, Akpuaka M U, Oluma H O A. (2011). Phytochemical and antimicrobial studies on stem bark extract of Sterculia setigera, Afr J Biotechnol, 10(53): 11011-11015. [Crossref], [Google scholar], [Publisher]
  13. Aliyu B S, Sani H D. (2011). In-vitro antibacterial activity of Anogeissus isoflavonoids, red clover, and alfalfa extracts on hemoglobin glycosylation. ARYA Atheroscler, 11(2): 133. [Crossref], [Google scholar], [Publisher]
  14. Abo K A, Lawal I O. (2013). Antidiabetic Activity of Physalis angulata extracts and fractions in Alloxan-induced Diabetic Rats. Adv Sci Res, 4(3): 32-36. [Crossref], [Google scholar], [Publisher]
  15. Lorke D. (1983). A new approach to practical Acute Toxicity Test. Arch. Toxicol, 275-287. [Google scholar], [Publisher]
  16. Ekeanyanwu R C, Njoku O U. (2014). Acute and subacute oral toxicity study on the flavonoid rich fraction of Monodora tenuifolia seed in albino rats. Asian Pacific journal of tropical biomedicine, 4(3): 194–202. [Crossref], [Google scholar], [Publisher]
  17. Ezekwe C I, Ezea S C, Nwodo O F C. (2014). Evaluation of hypoglycaemic activity of ethanol extract of Gongronema latifolium (Asclepiadaceae) leaves African Journal of Biotechnology, 13(27): 2750-2754. [Crossref], [Google scholar], [Publisher]
  18. Szkudelski T. (2001). The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological research. 50(6): 537–546. [Google scholar], [Publisher]
  19. Vashney R, Kale R K. (1990). Effects of calmodulin antagonist. J. Radiat. Biol, 58: 733-743. [Crossref], [Google scholar], [Publisher]
  20. Aebi H. Catalase. In: Bergmeyer HU, editor. Methods in enzymatic analysis. New York: Academic Press; 1974. 673–84. [Crossref], [Google scholar], [Publisher]
  21. Paglia D E, Valentine W N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of laboratory and clinical Medicine, 70(1): 158–169. [Crossref], [Google scholar], [Publisher]
  22. Misra H P, Fridovich I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. The Journal of Biological Chemistry, 247(10): 3170–3175. [Crossref], [Google scholar], [Publisher]
  23. Rutkowski M, Grzegorzczyk K, Gendek E,Kedziora (2006). Laboratory convenient modification of Bessey method for vitamin A determination in blood plasma. Journal of Physiology and Pharmacology, 57(suppl. 2): 221. [Google scholar], [Publisher]
  24. Baker H, Frank O. (1968). Clinical Vitaminology, Wiley, New York, NY, USA. [Google scholar], [Publisher]
  25. Tietz N W. (1990). Clinical Guide to Laboratory Tests. Second Edition. W.B. Saunders Company, Philadelphia. 554–556. [Google scholar], [Publisher]
  26. Friedewald W T, Levy R I, Fredrickson D S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6): 499–502. [Crossref], [Google scholar], [Publisher]
  27. Drury R A, Wallington E A, Cancerson R. (1976). Carlton’sHistological Techniques, fourth ed. Oxford University Press,Oxford, London, New York. [Google scholar], [Publisher]
  28. Tundis R, Loizzo M R, Menichini, F. (2010). Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Rev Med Chem, 10(4): 315-31. [Crossref], [Google scholar], [Publisher]
  29. Akbarzadeh A, Norouzian D, Mehrabi M R, Jamshidi S H, Farhangi A. (2007) Induction of diabetes by streptozotocin in rats. Indian Journal of Clinical Biochemistry, 22(2), 60-64. [Google scholar], [Publisher]
  30. Mohal S, Mondal D K, Shamim K M. (2011). Impact of Momordica Charantia (Karela) on body weight in the streptozotocininduced Diabetes Rats. Bangladesh Journal of Anatomy, 9(2): 106-109. [Google scholar], [Publisher]
  31. Gautam M K, Singh A, Rao C V, Goel R K. (2012). Toxicological evaluation of Murraya paniculata (Linn) leaves extract on rodent. American Journal of Pharmacology and Toxicolology, 7(2): 62-67. [Google scholar]
  32. Bulbul I J, Khan M F, Rashid M A. (2016). Analgesic and central nervous system depressant activities of methanol extract of Zizipus rugosa Lam. African Journal of Pharmacy and Pharmacology, 10(40): 819–853. [Crossref], [Google scholar], [Publisher]
  33. John-Africa L B, Danjuma N M, Anuka J A, Chindo B A. (2014). Sedative properties of Mitracarpus villosus leaves in mice. International Journal of Biological and Chemical Sciences, 8(5): 2132–2142. [Crossref], [Google scholar], [Publisher]
  34. O E C D. (2001). Guidelines for the testing of chemicals/section 4: Health effects test No. 423. Acute oral toxicity-Acute toxic class method. Organization for Economic Cooperation and development. [Google scholar], [Publisher]
  35. Abere T A, Onwukaema D N, Ozolua R I. (2012). Antidiabetic and Toxicological evaluation of aqueous leaf extract of Mitracarpus scarber Zucc (Rubiaceae) in Rats. African Journal of Pharmaceutical Research Development, 4(2): 1–7. [Crossref], [Google scholar], [Publisher]
  36. Sharma A K, Gupta R. (2017). Anti-Hyperglycemic Activity of Aqueous Extracts of Some Medicinal Plants on Wistar Rats. J Diabetes Metab, 8: 752. [Crossref], [Google scholar], [Publisher]
  37. Omonije O O, Saidu N A, Muhammad L H. (2019). Anti-diabetic activities of Chromolaena odorata methanol root extract and its attenuation effect on diabetic induced hepatorenal impairments in rats. Clinical Phytoscience, 5(1): 1-10. [Google scholar], [Publisher]
  38. Zhang Y, Feng F, Chen T, Li Z, Shen Q W. (2016). Antidiabetic and antihyperlipidemic activities of Forsythia suspensa (Tunb.) Vahl (fruit) in streptozotocin-induced diabetes mice. Journal of Ethnopharmacology, 192: 256–263. [Crossref], [Google scholar], [Publisher]
  39. Mansi K, Abual-basal M, Aburjai T. (2019). TheHypoglycaemic and Hypolipidemic Effects of Aqueous Extract of Alkanna strigosa in Alloxan Induced Diabetic Rats. Journal of Diseases and Medicinal Plants, 5(4): 60-68. [Crossref], [Google scholar], [Publisher]
  40. Rajasekar R, Manokaran K, Rajasekaran N, Duraisamy G, Kanakasabapathi D. (2014). Effect of Alpinia calcarata on glucose uptake in diabetic rats-an in vitro and in vivo model. J Diabetes Metab Disord, 13: 33. [Google scholar], [Publisher]
  41. Abou Khalil A S, Nasser S, Abou-Elhamd S, Wasfy I A, Ibtisam M H, El Mileegy M, Hamed Y, Hussein M A. (2016). Antidiabetic and Antioxidant Impacts of Desert Date (Balanites aegyptiaca) and Parsley (Petroselinum sativum) Aqueous Extracts: Lessons from Experimental Rats. Journal Diabetes of Research, 2016: 8408326. [Crossref], [Google scholar], [Publisher]
  42. Mooradian A D. (2009). Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Meta,. 5(3): 150–9. [Crossref], [Google scholar], [Publisher]
  43. Miaffo D, Guessom Kamgue O, Ledang Tebou N, Temhoul M C, Kamanyi (2019). Antidiabetic and antioxidant potentials of Vitellaria paradoxa barks in alloxan-induced diabetic rats. Clin Phytosci, 5: 44. [Crossref], [Google scholar], [Publisher]
  44. Triplitt C, Solis-Herrera C, Cersosimo E, Abdul-Ghani M, Defronzo R A. (2015). Empagliflozin and linagliptin combination therapy for treatment of patients with type 2 diabetes mellitus. Expert Opin Pharmacother, 16(18): 2819–33. [Crossref], [Google scholar], [Publisher]
  45. Njateng G S S, Yetendje L C, Dongmo A A, Mouokeu R S, Feudjio C, Tamekou S L, Iqbal J. (2019). in vivo antidiabetic activity and mechanism of action of three cameroonian medicinal plant extracts. International Journal of Research-Granthaalayah, 7(8): 415-430. [Crossref], [Google scholar], [Publisher]
  46. Hassan S K, EL-Sammad N M, Mousa A M, Mohammed M H, Farrag A H, Hashim A E H, Werner V, Lindequist U, Nawwar M A. (2015). Hypoglycemic and antioxidant activities of Caesalpinia ferra Martius leaf extract in Streptozotocin-Induced diabetic rats. Asian, Pacific J Trop Med, 5: 462–73. [Crossref], [Google scholar], [Publisher]
  47. Chen L, Chen R, Wang H, Liang F. (2015). Mechanisms linking inflammation to insulin resistance. INT J ENDOCRINOL, 1: 1–9. [Crossref], [Google scholar], [Publisher]
  48. Stirban A, Gawlowski T, Roden M. (2014). Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. MOL METAB, 3(2): 94–108. [Crossref], [Google scholar], [Publisher]
  49. Ononamadu C J, Alhassan A J, Imam A A, Ibrahim A, Ihegboro G O, Owolarafe A T, Sule M S. (2019). In vitro and in vivo anti-diabetic and anti-oxidant activities of methanolic leaf extracts of Ocimum canum. Caspian Journal of Internal Medicine, 10(2): 162–175. [Crossref], [Google scholar], [Publisher]
  50. Martson A, Hostettman K. (2006). Separation and quantification of flavonoids. In: Anderson Q M, Markham K R, editors. A flavonoids: chemistry, biochemistry and applications. 1st ed. Boca Raton, New York: CRC Press, 1–36. [Google scholar], [Publisher]
  51. Odum E P, Orluwene C G, Ejilemele A A, Wakwe V C. (2012). Antioxidant status of subject with metabolic syndrome in Port Harcourt, Nigeria. Niger Postgrad Med J, 19: 199–203. [Google scholar], [Publisher]
  52. Cahill M C, Cao L, Lin E J, Wang C., Liu X, During M J. (2009). Molecular therapy of obesity and diabetes by a physiological autoregulatory approach. Nature Medicine, 15(4): 447–454. [Crossref], [Google scholar], [Publisher]
  53. Oh P S, Lee S J, Lim K T. (2006). Hypolipidemic and antioxydative effects of the plant glycoprotein (36 kDa) from Rhus verniciflua stokes fruit in triton Wr-1339 induced hyperlipidemic mice. Bioscience Biotechnol Biochem, 70(2): 447–451. [Crossref], [Google scholar], [Publisher]
  54. Bandeira F, Gharib H, Golbert A, Griz L, Faria M. (2014). An overview on management of diabetic dyslipidaemia. Journal of Diabetes and Endocrinology, 4(3), 27–36. [Crossref], [Google scholar], [Publisher]
  55. Goldberg I J, (2001). Diabetic dyslipidemia: causes and consequences. Journal of Clinical Endocrinology and Metabolism, 86(3): 965–971. [Crossref], [Google scholar], [Publisher]
  56. Belayneh Y M, Birru E M. (2018). Antidiabetic Activities of Hydromethanolic Leaf Extract of Calpurnia aurea (Ait.) Benth. Subspecies aurea (Fabaceae) in Mice. Evidence-Based Complementary and Alternative Medicine, Article ID 3509073. [Crossref], [Google scholar], [Publisher]
  57. Akinloye O A, Solanke O O. (2011). Evaluation of hypolipidemic and potential antioxidant effects of Pigeon pea (Cajanus cajan (l) mill sp.) leaves in alloxan-induced hyperglycemic rats. Journal of Medicinal Plants Research, 5(12): 2521–2524. [Crossref], [Google scholar], [Publisher]
  58. Syiem D, Warjri P. (2011). Hypoglycemic and antihyperglycemic effects of aqueous extract of ixeris gracilis dc. On normal and alloxan-induced diabetic mice. Diabetologia Croatica, 40(3): 89–95. [Google scholar], [Publisher]
  59. Khan S T, Ahmed M, Khan R A, Mushtaq N, Khan N. (2017). Anti-diabetic potential of aerial parts of Galium tricornutum (Dandy) Rubiaceae. Trop J Pharm Res, 16: 1573-78. [Crossref], [Google scholar], [Publisher]
  60. Shah N A, Khan M R. (2014). Antidiabetic Effect of Sida cordata in Alloxan Induced Diabetic Rats. BioMed Research International, Article ID 2014. [Crossref], [Google scholar], [Publisher]
  61. Šoltésová D, Herichová, I. (2011). On the mechanisms of diabetogenic effects of alloxan and streptozotocin. Diabetol Metab Endokrinol výživa, 14: 130–138. [Crossref], [Google scholar], [Publisher]
  62. Thamizharasan S, Umamaheswari S, Hari R. (2016). ɑ-Amylase and ɑ-Glucosidase Activity of Mimosa Pudica. Linn Flowers. PARIPEX- Indian Journal of Research, 5: 223–4. [Google scholar], [Publisher]
  63. 63. Saleem M, Asif M, Yousaf S, Saadullah M, Zafar M, Khan R U, Yuchi A. (2019). Antidiabetic activity of aqueous extract of Sigesbeckia orientalis (St. Paul’s Wort) in alloxan-induced diabetes model. Brazil Journal of Pharmacological Science, 55, 2019. [Crossref], [Google scholar], [Publisher]  
  1. Kifle Z D, Enyew E F. (2020). Evaluation of in vivo antidiabetic, in vitro α-amylase inhibitory, and in vitro antioxidant activity of leaves crude extract and solvent fractions of bersama abyssinica fresen (melianthaceae). J Evid Based Integr Med, 25: 251569020935827. [Crossref], [Google scholar], [Publisher]