Document Type : Review Article

Authors

1 Endocrinology and Metabolism Research Center, Endocrinology and Metabolism ‎Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran

3 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran

4 Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran

Abstract

Introduction: Bacterial infection and the growing resistance of the bacteria to drugs is a global issue which challenges the health system. Therefore, the development of drugs with a different mechanism of action is a reasonable approach to overcome the drug resistance. Nitrofurans are antibacterial agents with broad-spectrum effects on various types of bacteria. In the present study, we aimed to review the reported derivatives of nitrofurans with antibacterial impacts to evaluate the potency and efficiency of these agents as candidates for antibacterial drug development.
Methods: A systematic literature search was performed on April 2021 in databases using “Nitrofurans” and “antibacterial” as the keywords using all their equivalents, similar terms, and known forms. The search was first limited to original articles in the English language, and all the relevant articles were included for data extraction. The main outcomes in all the included studies were antibacterial efficacy and bactericidal power.
Results: Overall, 36 articles were found and used for data extraction. Findings showed that nitrofuran-based compounds have satisfactory antimicrobial effects at the micromolar level. Most of these agents also revealed high efficacy on gram-positive and gram-negative bacteria with minimal toxicity on human cells. Findings suggested that chemical modification of nitrofurans with appropriate functional groups and molecules can enhance the efficiency of these agents.
Conclusion: According to the included studies, nitrofuran and its derivatives can be considered promising candidates for future drug discovery to combat drug-resistant bacteria.

Graphical Abstract

Nitrofurans as Potent Antibacterial Agents: A ‎Systematic Review of Literature

Keywords

Main Subjects

1. Munita J M, Arias C A. (2016). Mechanisms of Antibiotic Resistance. Microbiol Spectr, 4(2). ‎‎[Crossref], [Google Scholar], [Publisher]
2. Le V V H, Davies I G, Moon C D, Wheeler D, Biggs P J, Rakonjac J. (2019). Novel 5-nitrofuran-activating reductase in Escherichia coli. Antimicrobial agents and chemotherapy, 63(11): e00868-00819. ‎‎[Crossref], [Google Scholar], [Publisher]
3. Kamal A, Hussaini S M A, Faazil S, Poornachandra Y, Reddy G N, Kumar C G, Rajput V S, Rani C, Sharma R, Khan I A. (2013). Anti-tubercular agents. Part 8: Synthesis, antibacterial and antitubercular activity of 5-nitrofuran based 1, 2, 3-triazoles. Bioorganic & Medicinal Chemistry Letters, 23(24): 6842-6846. [Crossref], [Google Scholar], [Publisher]‎‎
4. Liberati A, Altman D G, Tetzlaff J, Mulrow C, Gøtzsche P C, Ioannidis J P A, Clarke M, Devereaux P J, Kleijnen J, Moher D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol, 62(10): e1-e34. ‎‎[Crossref], [Google Scholar], [Publisher]
5. Krasavin M, Lukin A, Vedekhina T, Manicheva O, Dogonadze M, Vinogradova T, Zabolotnykh N, Rogacheva E, Kraeva L, Sharoyko V. (2019). Attachment of a 5-nitrofuroyl moiety to spirocyclic piperidines produces non-toxic nitrofurans that are efficacious in vitro against multidrug-resistant Mycobacterium tuberculosis. European journal of medicinal chemistry, 166: 125-135. [Crossref], [Google Scholar], [Publisher]
6. Gallardo-Macias R, Kumar P, Jaskowski M, Richmann T, Shrestha R, Russo R, Singleton E, Zimmerman M D, Ho H P, Dartois V. (2019). Optimization of N-benzyl-5-nitrofuran-2-carboxamide as an antitubercular agent. Bioorganic & Medicinal Chemistry Letters, ‎‎29(4): 601-606. [Crossref], [Google Scholar], [Publisher]‎‎
7. Pandolfi F, D'Acierno F, Bortolami M, De Vita D, Gallo F, De Meo A, Di Santo R, Costi R, Simonetti G, Scipione L. (2019). Searching for new agents active against Candida albicans biofilm: A series of indole derivatives, design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 165: 93-106. [Crossref], [Google Scholar], [Publisher]
8. Fan Y-L, Wu J-B, Ke X, Huang Z-P. (2018). Design, synthesis and evaluation of oxime-functionalized nitrofuranylamides as novel antitubercular agents. Bioorganic & Medicinal Chemistry Letters, 28(18): 3064-3066. ‎‎[Crossref], [Google Scholar], [Publisher]
9. Phillips O A, Udo E E, D’silva R J. (2018). Structure-Antibacterial Activity Relationships of N-Substituted-(D-/L-Alaninyl) 1H-1, 2, 3-Triazolylmethyl Oxazolidinones. Scientia pharmaceutica, 86(4): 42.[Crossref], [Google Scholar], [Publisher]‎‎
10. Krasavin M, Lukin A, Vedekhina T, Manicheva O, Dogonadze M, Vinogradova T, Zabolotnykh N, Rogacheva E, Kraeva L, Yablonsky P. (2018). Conjugation of a 5-nitrofuran-2-oyl moiety to aminoalkylimidazoles produces non-toxic nitrofurans that are efficacious in vitro and in vivo against multidrug-resistant Mycobacterium tuberculosis. European journal of medicinal chemistry, 157: 1115-1126.[Crossref], [Google Scholar], [Publisher]
11. Huttner A, Kowalczyk A, Turjeman A, Babich T, Brossier C, Eliakim-Raz N, Kosiek K, De Tejada B M, Roux X, Shiber S. (2018). Effect of 5-day nitrofurantoin vs single-dose fosfomycin on clinical resolution of uncomplicated lower urinary tract infection in women: a randomized clinical trial. Jama, 319(17): 1781-1789.‎ ‎[Crossref], [Google Scholar], [Publisher]
12. Roveri P, Cavrini V, Gatti R, Bianucci F, Legnani P. (1982). Synthesis and Antimicrobial Activity of Some New 5‐Nitrofuran Derivatives. Archiv der Pharmazie, 315(4): 330-333.‎ ‎[Crossref], [Google Scholar], [Publisher]
13. Picconi P, Prabaharan P, Auer J L, Sandiford S, Cascio F, Chowdhury M, Hind C, Wand M E, Sutton J M, Rahman K M. (2017). Novel pyridyl nitrofuranyl isoxazolines show antibacterial activity against multiple drug resistant Staphylococcus species. Bioorganic & medicinal chemistry, 25(15): 3971-3979.[Crossref], [Google Scholar], [Publisher]
14. Verbitskiy E V, Baskakova S A, Natal'ya A G, Natal'Ya P E, Natal'Ya V, Kungurov N V, Kravchenko M A, Skornyakov S N, Pervova M G, Rusinov G L. (2017). Synthesis and biological evaluation of novel 5-aryl-4-(5-nitrofuran-2-yl)-pyrimidines as potential anti-bacterial agents. Bioorganic & Medicinal Chemistry Letters, 27(13): 3003-3006. [Crossref], [Google Scholar], [Publisher]
15. Arias D G, Herrera F E, Garay A S, Rodrigues D, Forastieri P S, Luna L E, Bürgi M, Prieto C, Iglesias A A, Cravero R M. (2017). Rational design of nitrofuran derivatives: Synthesis and valuation as inhibitors of Trypanosoma cruzi trypanothione reductase. European Journal of Medicinal Chemistry, 125: 1088-1097. ‎‎[Crossref], [Google Scholar], [Publisher]
16. Gould E R, King E F, Menzies S K, Fraser A L, Tulloch L B, Zacharova M K, Smith T K, Florence G J. (2017). Simplifying nature: Towards the design of broad spectrum kinetoplastid inhibitors, inspired by acetogenins. Bioorganic & medicinal chemistry, ‎‎25(22): 6126-6136. [Crossref], [Google Scholar], [Publisher]
17. Ran K, Gao C, Deng H, Lei Q, You X, Wang N, Shi Y, Liu Z, Wei W, Peng C. (2016). Identification of novel 2-aminothiazole conjugated nitrofuran as antitubercular and antibacterial agents. Bioorganic & Medicinal Chemistry Letters, 26(15): 3669-3674. [Crossref], [Google Scholar], [Publisher]‎‎
18. Abdel-Aziz H A-K, Eldehna W M, Fares M, Elsaman T, Abdel-Aziz M M, Soliman D H. ‎‎(2015). Synthesis, in vitro and in silico studies of some novel 5-nitrofuran-2-yl hydrazones as antimicrobial and antitubercular agents. Biological and Pharmaceutical Bulletin, 38: 1617-1630. ‎‎[Crossref], [Google Scholar], [Publisher]
19. Pieroni M, Wan B, Zuliani V, Franzblau S G, Costantino G, Rivara M. (2015). Discovery of antitubercular 2, 4-diphenyl-1H-imidazoles from chemical library repositioning and rational design. European journal of medicinal chemistry, 100: 44-49. [Crossref], [Google Scholar], [Publisher]‎‎
20. Samala G, Devi P B, Nallangi R, Sridevi J P, Saxena S, Yogeeswari P, Sriram D. (2014). Development of novel tetrahydrothieno [2, 3-c] pyridine-3-carboxamide based Mycobacterium tuberculosis pantothenate synthetase inhibitors: molecular hybridization from known antimycobacterial leads. Bioorganic & medicinal chemistry, ‎‎22(6): 1938-1947. ‎‎[Crossref], [Google Scholar], [Publisher]
21. Zorzi R R, Jorge S D, Palace-Berl F, Pasqualoto K F M, de Sá Bortolozzo L, de Castro Siqueira A M, Tavares L C. (2014). Exploring 5-nitrofuran derivatives against nosocomial pathogens: synthesis, antimicrobial activity and chemometric analysis. Bioorganic & medicinal chemistry, 22(10): 2844-2854. [Crossref], [Google Scholar], [Publisher]
22. Asadipour A, Edraki N, Nakhjiri M, Yahya-Meymandi A, Alipour E, Saniee P, Siavoshi F, Shafiee A, Foroumadi A. (2013). Anti-Helicobacter pylori activity and structure-activity relationship study of 2-alkylthio-5-(nitroaryl)-1, 3, 4-thiadiazole derivatives. Iranian Journal of Pharmaceutical Research: IJPR, 12(3): 281. ‎‎[Crossref], [Google Scholar], [Publisher]
23. Phillips O A, Udo E E, Abdel-Hamid M E, Varghese R. (2013). Synthesis and antibacterial activities of N-substituted-glycinyl 1H-1, 2, 3-triazolyl oxazolidinones. European journal of medicinal chemistry, 66: 246-257. [Crossref], [Google Scholar], [Publisher]
24. Lapa G B, Bekker O, Mirchink E, Danilenko V, Preobrazhenskaya M. (2013). Regioselective acylation of congeners of 3-amino-1H-pyrazolo [3, 4-b] quinolines, their activity on bacterial serine/threonine protein kinases and in vitro antibacterial ‎‎(including antimycobacterial) activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 28(5): 1088-1093. [Crossref], [Google Scholar], [Publisher]
25. Yanagita H, Fudo S, Urano E, Ichikawa R, Ogata M, Yokota M, Murakami T, Wu H, Chiba J, Komano J. (2012). Structural modulation study of inhibitory compounds for ribonuclease H activity of human immunodeficiency virus type 1 reverse transcriptase. Chemical and Pharmaceutical Bulletin, 60(6): 764-771. [Crossref], [Google Scholar], [Publisher]
26. Badr S M, Barwa R M. (2011). Synthesis of some new [1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazines and [1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazoles starting from 5-nitro-2-furoic acid and evaluation of their antimicrobial activity. Bioorganic & medicinal chemistry, 19(15): 4506-4512. ‎‎[Crossref], [Google Scholar], [Publisher]
27. Soares de Oliveira C, dos Santos Falcão-Silva V, Siqueira-Júnior J P, Harding D P, Lira B F, Lorenzo J G F, Barbosa-Filho J M, Filgueiras de Athayde-Filho P. (2011). Drug resistance modulation in Staphylococcus aureus, a new biological activity for mesoionic hydrochloride compounds. Molecules, 16(3): 2023-2031.[Crossref], [Google Scholar], [Publisher]
28. Blackburn C, Duffey M O, Gould A E, Kulkarni B, Liu J X, Menon S, Nagayoshi M, Vos T J, Williams J. (2010). Discovery and optimization of N-acyl and N-aroylpyrazolines as B-Raf kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 20(16): 4795-4799. [Crossref], [Google Scholar], [Publisher]
29. Kamal A, Shetti R V, Azeeza S, Ahmed S K, Swapna P, Reddy A M, Khan I A, Sharma S, Abdullah S T. (2010). Anti-tubercular agents. Part 5: Synthesis and biological evaluation of benzothiadiazine 1, 1-dioxide based congeners. European journal of medicinal chemistry, 45(10): 4545-4553. [Crossref], [Google Scholar], [Publisher]‎‎
30. Ancizu S, Moreno E, Torres E, Burguete A, Pérez-Silanes S, Benítez D, Villar R, Solano B, Marín A, Aldana I. (2009). Heterocyclic-2-carboxylic acid (3-cyano-1, 4-di-N-oxidequinoxalin-2-yl) amide derivatives as hits for the development of neglected disease drugs. Molecules, 14(6): 2256-2272. [Crossref], [Google Scholar], [Publisher]
31. Al‐Saadi M S, Faidallah H M, Rostom S A. (2008). Synthesis and biological evaluation of some 2, 4, 5‐trisubstituted thiazole derivatives as potential antimicrobial and anticancer agents. Arch. Pharm., 341(7): 424-434.‎ ‎[Crossref], [Google Scholar], [Publisher]
32. Kamal A, Ahmed S K, Reddy K S, Khan M N A, Shetty R V, Siddhardha B, Murthy U, Khan I A, Kumar M, Sharma S. (2007). Anti-tubercular agents. Part IV: Synthesis and antimycobacterial evaluation of nitroheterocyclic-based 1, 2, 4-benzothiadiazines. Bioorganic & Medicinal Chemistry Letters, 17(19): 5419-5422. [Crossref], [Google Scholar], [Publisher]‎‎
33. Metwally K A, Abdel-Aziz L M, Lashine E-S M, Husseiny M I, Badawy R H. (2006). Hydrazones of 2-aryl-quinoline-4-carboxylic acid hydrazides: Synthesis and preliminary evaluation as antimicrobial agents. Bioorganic & medicinal chemistry, ‎‎14(24): 8675-8682. [Crossref], [Google Scholar], [Publisher]‎‎
34. Ghannoum M, Thomson M, Beadlec C, Bowman W. (1988). Antibacterial activity of some α-substituted 2-methyl-5-nitrofurans. Folia microbiologica, 33(3): 198. [Crossref], [Google Scholar], [Publisher]
35. Jones Jr G S, Daly J S. (1993). Antibacterial organophosphorus compounds: Phosphoranilidohydrazones of 5‐nitro‐2‐furaldehyde. Journal of pharmaceutical sciences, 82(7): 755-757. [Crossref], [Google Scholar], [Publisher]
36. Kupchik E J, Pisano M A, Whalen S M, Lynch J. (1982). Synthesis and antimicrobial activity of triorganotin 5‐nitro‐2‐furoates. Journal of pharmaceutical sciences, 71(3): ‎‎311-314. ‎‎[Crossref], [Google Scholar], [Publisher]
37. Chadfield M, Hinton M. (2003). Evaluation of treatment and prophylaxis with nitrofurans and comparison with alternative antimicrobial agents in experimental Salmonella enterica serovar Enteritidis infection in chicks. Veterinary research communications, 27(4): 257-273.[Crossref], [Google Scholar], [Publisher]
38. Gadebusch H, Basch H. (1974). New Antimicrobial Nitrofuran, trans-5-Amino-3-[2-(5-Nitro-2-Furyl) Vinyl]-Δ2-1, 2, 4-Oxadiazole: Antibacterial, Antifungal, and Antiprotozoal Activities In Vitro. Antimicrobial agents and chemotherapy, 6(3): 263-267. ‎‎[Crossref], [Google Scholar], [Publisher]
39. McOsker C C, Fitzpatrick P M. (1994). Nitrofurantoin: mechanism of action and implications for resistance development in common uropathogens. J Antimicrob Chemother, 33 Suppl A: 23-30. [Crossref], [Google Scholar], [Publisher]
40. Karpman E, Kurzrock E A. (2004). Adverse reactions of nitrofurantoin, trimethoprim and sulfamethoxazole in children. J Urol., 172(2): 448-453. [Crossref], [Google Scholar], [Publisher]