Document Type : Original Article


1 Department of Physics, Payame Noor University (PNU), Tehran, Iran

2 Department of Nuclear Engineering, Faculty of Modern Sciences and Technologies, Graduate University Advanced Technology, Kerman, Iran

3 Department of Nuclear Engineering, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran


Introduction: Hot spring water is used for health and medical treatment. Hot spring water, when passing underground rocks, is contaminated with radioactive materials and water soluble sinter. Therefore, using Hot springs is associated with radiation hazards. There are Thorium (Th), Potassium (K), Uranium (U) and Caesium (Cs) as radioactive elements in sinter, soil and water of hot springs.

Materials: First, the Th, K, U and Cs activity in the sinter, soil and water of Jooshan Hot Spring (30°09'38.7"N, 57°35'58.7"E) was measured by a CsI(Tl) detector. Then, using the radiation hazards equations, the amount of radiation hazards caused by radioactive elements in the sinter, soil, and Hot spring water was investigated.

Results: The XRD results indicated that the sinter composite of Jooshan Hot Spring is a combination of CaCO3 and SiO2 materials. The activity of Th, U, K and Cs elements in the water, sinter, and soil of hot spring were 38.76 ,11.07 ,0 and 3.05; 45.8, 2.77 and 3.05 Bq/kg, and 26.42 ,34.0, 0 and 12.19 Bq/kg, respectively. The radiation hazards of Jooshan Hot Spring using the radiation hazards equations was calculated.

Conclusion: Due to the activity of Th, K, U, and Cs, the radiation injuries or hazards, including Daeq, Hin, and Hout for the sinter soil and water were calculated to be less than the reported limit. Therefore, using Jooshan Hot Spring has not any radiation hazards

Graphical Abstract

Radiation Hazards Investigation of Jooshan Hot Spring in Kerman Province


Main Subjects

  1. Hamid B, Bagher A M, Reza B M, Mahboubeh B. (2016). Review of sustainable energy sources in Kerman. World J. Eng., 13(2): 109-119. [Crossref], [Google Scholar], [Publisher]
  2. Hashemi‎ S M, Negarestani A. (2011). Effective dose rate of radon gas in Jooshan hot spring of Kerman ‎Province. JKMU, 18(3): 279-285.  [Google Scholar], [Publisher]‎‎
  3. Montazeri H, Abbasnejad A, Negarestani A. (2011). Continuous radon monitoring in ‎the Jowshan hot spring as an earthquake precursor, SE Iran. Geochem. J., 45(6): ‎‎463-472. [Crossref], [Google Scholar], [Publisher]‎
  4. Pourimani R, Nemati Z. (2016). Measurement of Radionuclide Concentration in Some ‎Water Resources in Markazi Province, Iran. Iran. J. Med. Phys., 13(1): 49-‎‎57. [Crossref], [Google Scholar], [Publisher]
  5. Rezaie Rayeni Nejad M R. (2020). Investigation of the relationship between of the ‎Radon Concentration Variation in Reyhanshahr Hot Spring and Earthquakes with D/R> ‎‎0.5 in that Zone. IJRSM, 8(4): 267-274. ‎[Crossref], [Google Scholar], [Publisher]‎
  6. Namvaran M, Negarestani A. (2013). Measuring the radon concentration and ‎investigating the mechanism of decline prior an earthquake (Jooshan, SE of Iran). J Radioanal Nucl Chem., 298: 1-8. [Crossref], [Google Scholar], [Publisher]‎
  7. Dabayneh K, Mashal L, Hasan F. (2008). Radioactivity concentration in soil samples in ‎the southern part of the West Bank, Palestine. Radiat. Prot. Dosimetry, 131(2): 265-‎‎271. [Crossref], [Google Scholar], [Publisher]‎
  8. Thabayneh K. (2012). Natural radioactivity levels and estimation of radiation ‎exposure in environmental soil samples from Tulkarem Province–Palestine, Open J. Soil Sci., 2, 7-16. [Crossref], [Google Scholar], [PDF]
  9. Faweya E, Babalola A. (2010). Radiological safety assessment and occurrence of ‎heavy metals in soil from designated waste dumpsites ‎used for building and composting in Southwestern Nigeria. Arab. J. Sci. Eng., 35(2): 219. [Google Scholar], [Pdf]
  10. ‎Huy N Q, Luyen T. (2006). Study on external exposure doses from terrestrial ‎radioactivity in Southern Vietnam. Radiat. Prot. Dosimetry., 118(3): 331-336‎. [Crossref], [Google Scholar], [Publisher]‎
  11. Abel-Ghany H. (2010). Natural activities of 238 U, 232 Th and 40 K in manganese ore. ‎Am. J. Environ. Sci., 6(1): 90-94. [Crossref], [Google Scholar], [Publisher]‎‎
  12. Alharbi W, Alzahrani J, Abbady A G. (2011). Assessment of radiation hazard indices ‎from granite rocks of the southeastern Arabian Shield, Kingdom of Saudi Arabia. Aust J Basic Appl Sci, 5(6): 672-682. [Google Scholar], [Publisher]‎
  13. El-Shershaby A, El-Bahi S, El-Dine N W, Dabayneh K. (2006). Assessment of natural ‎and man-made radioactivity levels of the plant leaves samples as bio-indicators of ‎pollution in Hebron District. Arab J Nucl Sci Appl, 39(2): 231-242. [Google Scholar], [Pdf]‎‎
  14. Fatima I, Zaidi J, Arif M, Daud M, Ahmad S, Tahir S. (2008). Measurement of natural ‎radioactivity and dose rate assessment of terrestrial gamma radiation in the soil of ‎southern Punjab, Pakistan. Radiat. Prot. Dosimetry, 128(2): 206-212. [Crossref], [Google Scholar], [Publisher]‎‎
  15. Mohammed R, Ahmed R. (2017). Estimation of excess lifetime cancer risk and ‎radiation hazard indices in southern Iraq. Environ. Earth Sci., 76(7): 1-9. ‎[Crossref], [Google Scholar], [Publisher]‎‎
  16. Veiga R, Sanches N, Anjos R, Macario K, Bastos J, Iguatemy M, Aguiar J G, Santos A, ‎Mosquera B, Carvalho C. (2006). Measurement of natural radioactivity in Brazilian beach ‎sands. Radiat. Meas., 41(2): 189-196. ‎[Crossref], [Google Scholar], [Publisher]
  17. Issa S, Uosif M, Elsaman R. (2013). Gamma radioactivity measurements in Nile River ‎sediment samples. Turkish J. Eng. Environ. Sci., 37(1): ‎‎109-122. [Crossref], [Google Scholar], [Pdf]
  18. Mahur A, Kumar R, Mishra M, Ali S, Sonkawade R, Singh B, Bhardwaj V, Prasad R. ‎‎(2010). Study of radon exhalation rate and natural radioactivity in soil samples collected ‎from East Singhbhum Shear Zone in Jaduguda U-Mines Area, Jharkhand, India and its ‎radiological implications. IJPAP, 48(07): 486-492. [Google Scholar], [Publisher]‎‎
  19. ‎‎‎‎Beretka J, Matthew P. (1985). Natural radioactivity of Australian building materials, ‎industrial wastes and by-products. Health physics, 48(1): 87-95. [Crossref], [Google Scholar], [Publisher]‎
  20. Jargin S V. (2014). On the genetic effects of low-dose radiation. J Environ Occup Sci., ‎‎3(4): 199-203. [Crossref], [Google Scholar], [Publisher]‎
  21. Al-Saleh F S, Al-Berzan B. (2007). Measurements of natural radioactivity in some ‎kinds of marble and granite used in Riyadh region. J. Nucl. Radiat. Phys., 2(1): 25-36. [Google Scholar], [Pdf]‎
  22. Ramasamy V, Suresh G, Meenakshisundaram V, Gajendran V. (2009). Evaluation of ‎natural radionuclide content in river sediments and excess lifetime cancer risk due to ‎gamma radioactivity. Research Journal of Environmental and Earth Sciences, 1(1): 6-10. [Google Scholar], [Publisher]‎‎
  23. Taskin H, Karavus M, Ay P, Topuzoglu A, Hidiroglu S, Karahan G. (2009). ‎Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in ‎Kirklareli, Turkey. J. Environ. Radioact., 100(1): 49-53. [Crossref], [Google Scholar], [Publisher]‎‎
  24. Putra A, Inanda D, Buspa F, Salim A.  (2018). Microstructure of Sinter Deposit ‎Formed at Hot Springs in West Sumatera. J. Phys.: Conf. Ser., 97, 012048. [Crossref], [Google Scholar], [Publisher]
  25. Karakaya M Ç, Doğru M, Karakaya N, Kuluöztürk F, Nalbantçılar M T. (2017). ‎Radioactivity and hydrochemical properties of certain thermal Turkish spa waters. J Water Health., 15(4): 591-601. [Crossref], [Google Scholar], [Publisher]‎
  26. Duran S, Küçükömeroğlu B, Çevik U, Çelik N, Taskin H, Ersoy H. (2019). ‎Radioactivity measurements in spas ‎of central and Eastern Black Sea region, Turkey. Int. J. Radiat. Res., 17(3): 383-391. [Crossref], [Google Scholar], [Publisher]
  27. Ismail, S. (2021). Cholinesterase and Aliesterase as a Natural Enzymatic Defense against Chlorpyrifos in Field Populations of Spodoptera Littoralis (Boisdüval, 1833) (Lepidoptera, Noctüidae). Journal of Plant Bioinformatics and Biotechnology, 1(1): 41-50. [CrossRef], [Google Scholar], [Publisher]‎