Response of False Aralia Plant to Gibberellic Acid and Benzyladenine Application

Ali Salehi Sardoei, Maryam Zarinkolah, Seyyed Mohammad Hadi Alavi

DOI: 10.18869/IJABBR.2018.47

International Journal of Advanced Biological and Biomedical Research

Journal DOI: 10.18869/IJABBR

ISSN: 2322-4827

CODEN (USA): IJABIS

http://ijabbr.com

Copyright © 2018 by authors and CASRP Publishing Company, Ltd, UK. This work is licensed under the Creative Commons Attribution International License (CC BY4.0).

https://creativecommons.org/licenses/by/4.0/
Response of False Aralia Plant to Gibberellic Acid and Benzyladenine Application

Ali Salehi Sardoei1*, Maryam Zarinkolah2, Seyyed Mohammad Hadi Alavi3

1Department of Horticultural Science, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Iran.
2Master of Science in Horticulture Vali-e-Arsuniversity of Rafsanjan, Iran.
3Master of Science in Horticulture Mohaghegh Ardabil University of Ardabil, Iran.

Abstract

False aralia (Dizygotheca elegantissima) also known as spider aralia or threadleaf aralia, is grown for its attractive foliage. The long, narrow, dark green leaves with saw-tooth edges are coppery colored at first, but as they mature they turn dark green, appearing almost black on some plants. Field trials with False aralia (Dizygotheca elegantissima) were conducted at the experimental greenhouse of Faculty of Agriculture, Azad University Jiroft in growth seasons of 2013. The aim of this work was to study the effect of foliar application of gibberellic acid (GA3) and benzyladenine (BA) both at 0, 100 and 200mgL\(^{-1}\) on the growth and photosynthetic pigments of Dizygotheca elegantissima plant. Effect of GA3 and interaction significant (p<0.01) also effect BA on leaf area was non significant. Results showed that, 200 mg L\(^{-1}\) GA3 + 200 mg L\(^{-1}\) BA increased leaf area of False aralia as 43.87% compared to control treatment. 200 mg L\(^{-1}\) GA3 + 200 mg L\(^{-1}\) BA increased chlorophyll index, plant height and leaf area of False aralia as 61.62, 24.48 and 43.87% compared to control treatment. Also 200 mg L\(^{-1}\) BA cause increased chl. (b), total chl. a+b and sum pigments of False aralia as 15.65, 38.03 and 36.91% compared to control treatment.

© 2018 Published by CASRP Publishing Company Ltd. UK. Selection and/or peer-review under responsibility of Center of Advanced Scientific Research and Publications Ltd. UK.

Keywords: Benzyladenine, False aralia, Gibberellic acid, Leaf area, Plant height

*Corresponding author: alisalehisardoei1987@gmail.com

© 2018 The Authors. This is an open access article under the terms of the Creative Commons Attribution-Non Commercial- No Derives License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Received 19 January 2018
English editing 18 May 2018
Available online 30 May 2018

Original Article
Open Access
1. Introduction

Dizygotheca elegansissima (formerly called *Schefflera elegansissima* and *Plerandra elegansissima*) also known as False aralia is a species of flowering plant in the Araliaceae family, native to New Caledonia (Lowry et al., 2013). Growing to 8-15m tall by 2m broad, it is an evergreen shrub or tree. Its leaves are thin, coppery red to dark green with toothed edges and on adult plants the leaves are much broader. In autumn it bears clusters of pale green flowers followed by black fruits. With a minimum temperature of 13-15 °C, in temperate zones it is grown as a houseplant and is much more compact, typically reaching heights of 2-3m (Anonymous, 2008). This plant has gained the Royal Horticultural Society’s Award of Garden Merit.

Cytokinins are important plant hormones that regulate various processes of plant growth and development, including cell division and differentiation, enhancement of leaf expansion and nutrient mobilization (Hassan and El-Quesni, 1989; Shudok, 1994). The response of plants to cytokinins have been also discussed in more research where Eraki (1994a) on *Hibiscus sabdariffa* L. plants mentioned that application of BA significantly increased plant height, number of branches as well as fresh and dry weights of leaves than the control. Hassanein (1985) on *Pelargonium graveolens*, Hassan Pour Asil et al. (2011) on *Polianthus Tuberosa*, Menesi et al. (1991) on *Calendula officinalis* and Mazrou et al. (1994b) on sweet basil, they found that foliar application of BA increased growth of different organs, active constituents production of these plants and increased total carbohydrates content on comparison to the untreated plants. It has been known that growth regulators among the agriculture practices is most favourable for promoting and improving plant growth. The effect of cytokinins, especially benzyladenine on the plant growth and chemical constituents of different plants have been mentioned by Eraki et al. (1993) on salvia plants, Mazrou (1992) on Datura, Mazrou et al. (1994) on sweet basil, Mansoure et al. (1994) on soybean plants. Also the beneficial effect of gibberellic acid on different plants were recorded by Shedeed et al. (1991) on croton plant, Eraki (1994a) on Quen Elizabeth rose plants, Bedour et al. (1994) on *Ocimum basilicum*, they concluded that gibberellic acid is used to regulating plant growth through increasing cell division and cell elongation.

The main object of the present work is to study the response of False aralia (**Dizygotheca elegansissima**) plant to GA$_3$ and BA application, 120 days after spray.

2. Materials and methods

2.1. Plant material and cultivation conditions

The present work was conducted during the successive seasons of 2013 year at greenhouse of National Research Centre (Research and Production Station). Plastic pots 30 cm in diameter were used for cultivation that were filled with media containing a mixture of sand, rice husk, leaf composts and peat as 1:1:1:1(v/v). The plants were fertilized with 3% liquid fertilizer in some doses after 4, 6 and 8 weeks from transplanting. Was the treatments of GA$_3$ and BA(0, 100 and 200mg L$^{-1}$) each treatment was contain 10ml (0.1 %) Tween-20 surfactant. For each plant 40 cc of solution was used at each stage (three stages) with 15 days intervals (Lowry et al., 2013; Salehi Sardoei, 2014a). Treatments to GA$_3$ and BA that the combination was as follows:

1: Control; 2: 100 mg l$^{-1}$ of BA; 3:200 mg l$^{-1}$ of BA; 4:100 mg L$^{-1}$GA$_3$; 5:100 mg L$^{-1}$GA$_3$ + 100 mg l$^{-1}$ of BA; 6:100 mg L$^{-1}$GA$_3$ + 200 mg l$^{-1}$ of BA; 7: 200 mg L$^{-1}$GA$_3$; 8: 200 mg L$^{-1}$GA$_3$ + 100 mg l$^{-1}$ of BA; 9: 200 mg L$^{-1}$GA$_3$ + 200 mg l$^{-1}$ of BA.

2.2. Character evaluation

Observation were recorded on: Plant height (cm), stem diameter (with helps of caliper in mm), number of leaves/plant, leaf area (cm2), chlorophyll index(using Spad-502, Mirolta Co.) and photosynthetic pigments(mg.ml$^{-1}$).

2.3. Estimation of chlorophyll and carotenoids

Photosynthetic pigments were measured using Lichtentaller method (Lichtenthaler, 2013). 0.2g of fresh leaf tissue was weight by laboratory balance with accuracy of 0.0001g and pulverized with mortar in the presence of 10ml of 80% acetone. The resulted solution was filtered through wattman filter paper mounted in glass funnel. The solution volume was increased to 15ml by addition of 80% acetone. 3ml of the solution containing chlorophyll a and b and carotenoid was poured in cuvet and its absorbance was measured in wavelengths of 663.2nm
(chlorophyll a), 646.8nm (chlorophyll b) and 470nm (carotenoids) using spectrophotometer device, concentration of the pigments were calculated using:

\[
\text{Chl}_a (\text{mg.ml}^{-1}) = (12.5 \times A_{663.2}) - (2.79 \times A_{646.8}) \\
\text{Chl}_b (\text{mg.ml}^{-1}) = (21.51 \times A_{646.8}) - (5.1 \times A_{663.2}) \\
\text{Chl T (mg.ml}^{-1}) = \text{Chl.a + Chl.b} \\
\text{Car (mg.ml}^{-1}) = (1000 \times A_{470}) - (1.8 \times \text{Chl.a}) - (85.02 \times \text{Chl.b})
\]

Where chl.a, chl.b, ch1 total and car are concentration of chlorophyll a, chlorophyll b and carotenoids (carotene and xanthophyll); and A_{663.2}, A_{646.8} and A_{470} stand for absorbance in 663.2nm (chlorophyll a), 646.8nm (chlorophyll b) and 470nm (carotenoids), respectively.

2.4. Experimental design and statistical analysis

Experiment was arranged in a factorial test with completely randomized design with four replications. Analysis of variance was performed on the data collected using the general linear model (GLM, procedure of the SPSS software, version 16, IBM Inc.). The mean separation was conducted by Duncan analysis in the same software (p= 0.05).

3. Results and discussion

3.1. Chlorophyll index

Effects of the interaction level (p<0.05) and effect of GA, and BA level (p<0.01) on chlorophyll index was significant (Table 1). Results showed that 200 mg L^{-1} GA3 + 200 mg L^{-1} BA and 200 mg L^{-1} GA3 + 100 mg L^{-1} BA increased leaf chlorophyll index of False aralia as 61.62 and 46.48% compared to control treatment (Table 2).

3.2. Plant height

Effects of GA3, BA and the interaction significant (p<0.01), also effect of BA on plant height was significant (Table 1). Results showed that 200 mg L^{-1} GA3 + 200 mg L^{-1} BA, and 200 mg L^{-1} GA3 + 100 mg L^{-1} BA cause increased plant height of False aralia as 24.48 and 22.99% compared to control treatment (Table 2). Results related to attribution, showed growth of leaf that bean applicated with GA3 and BA had significant effect with control treatments. GA3 is used to regulating plant growth through increased meristematic activity due to enhance cell division and elongation Bhattuchajee et al. (2002) on Carchourusolitorius L. These results adapted with results of Rahbarian et al. (2014) and Salehi Sardoei et al. (2014a) about effect of GA3 on increase of growth index.

3.3. Stem diameter

Effects of GA3 and BA was significant (p<0.01), also interaction effect on stem diameter was non significant (Table 1). Results showed that control treatment, 200 mg L^{-1} BA and 100 mg L^{-1} GA3 + 200 mg L^{-1} BA increased stem diameter of False aralia as 125% compared to 200 mg L^{-1} GA3 + 200 mg L^{-1} BA (Table 2). In this respect Rawia and Bedour (2006) on croton mentioned that, BA increased general growth compared with control plants.

3.4. Leaf area

Effects of GA3 and interaction was significant (p<0.01), also effect of BA on leaf area was non significant (Table 1). Results showed that, 200 mg L^{-1} GA3 + 200 mg L^{-1} BA increased leaf area of False aralia as 43.87% compared to control treatment (Table 2).

3.5. No. of leaves/plant

Effects of BA and interaction was significant (p<0.01) also effect GA3 on No. of leaves/plant was non significant (Table 1). Results showed that, 200 mg L^{-1} GA3 + 100 mg L^{-1} benzyladenine, 100 mg L^{-1} GA3+ 200 mg L^{-1} BA, 200 mg L^{-1} GA3 and 200 mg L^{-1} GA3 + 200 mg L^{-1} BA increased No. of leaves/plant of False aralia as 24.33, 23.80, 23.28 and 6.87% compared to control treatment (Table 2). Results related to attribution, showed growth of leaf that bean applicated with of GA3 and BA was significant in comparison to control treatment. These result adapted with results of Rahbarian et al. (2014) and Rahbarian et al. (2014); Salehi Sardoei (2014a) about the effect of GA3 on increase of growth parameters.
Table 1
Analysis of variance for False Aralia (*Dizygotheecaelegantissima*) plant to evaluate effects of GA$_3$ and BA treatments on studied traits, 120 day after spray.

<table>
<thead>
<tr>
<th>Source of variance</th>
<th>df</th>
<th>Leaf chlorophyll Index</th>
<th>Plant height (cm)</th>
<th>Stem diameter (cm)</th>
<th>Leaf area (cm2)</th>
<th>No. of leaves/plant</th>
<th>Chl. (a)</th>
<th>Chl. (b)</th>
<th>Total chl. (a+b)</th>
<th>Carotenoids</th>
<th>Sumpignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gibberellic acid</td>
<td>2</td>
<td>39.62**</td>
<td>44.25**</td>
<td>0.08**</td>
<td>24.24**</td>
<td>13.77m</td>
<td>1.92m</td>
<td>1.004m</td>
<td>5.06m</td>
<td>0.023m</td>
<td>5.15m</td>
</tr>
<tr>
<td>Benzyladenine</td>
<td>2</td>
<td>18.93*</td>
<td>26.77**</td>
<td>0.09**</td>
<td>1.30m</td>
<td>75.02**</td>
<td>6.97m</td>
<td>0.49**</td>
<td>11.13**</td>
<td>0.022m</td>
<td>12.30**</td>
</tr>
<tr>
<td>Gibberellic acid x</td>
<td>4</td>
<td>18.61*</td>
<td>40.98**</td>
<td>0.02**</td>
<td>14.99**</td>
<td>121.23**</td>
<td>17.05**</td>
<td>0.19**</td>
<td>19.87**</td>
<td>1.39**</td>
<td>30.88**</td>
</tr>
<tr>
<td>Benzyladenine</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>-</td>
<td>14.50</td>
<td>3.15</td>
<td>7.69</td>
<td>6.75</td>
<td>7.54</td>
<td>18</td>
<td>7.95</td>
<td>6.11</td>
<td>17.01</td>
<td>6.99</td>
</tr>
<tr>
<td>C.V</td>
<td></td>
</tr>
</tbody>
</table>

*Non Significant at 0.05 probability level and *,** Significant at 0.01 and 0.05 probability levels, respectively.

Table 2
Effects of GA$_3$ and BA on plant growth parameters of False aralia (*Dizygotheecaelegantissima*) plant, 120 days after spray.

<table>
<thead>
<tr>
<th>GA$_3$</th>
<th>BA</th>
<th>Leaf Chlorophyll Index (SPAD)</th>
<th>Plant height (cm)</th>
<th>Stem diameter (cm)</th>
<th>Leaf area (cm2)</th>
<th>No. of leaves/plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>12.22e</td>
<td>41.87d</td>
<td>0.45a</td>
<td>13.22e</td>
<td>47.25e</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>13.36de</td>
<td>45.72c</td>
<td>0.42ab</td>
<td>13.15de</td>
<td>50.50de</td>
</tr>
<tr>
<td>0</td>
<td>200</td>
<td>14.86bcd</td>
<td>48.12b</td>
<td>0.45a</td>
<td>14.97cd</td>
<td>52de</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>14.02cde</td>
<td>48.37b</td>
<td>0.37bc</td>
<td>14.52de</td>
<td>52de</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>14.33bcd</td>
<td>46.25bc</td>
<td>0.41abc</td>
<td>15.20cd</td>
<td>53.75bc</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>17.60abc</td>
<td>46.62bc</td>
<td>0.45a</td>
<td>16.49bc</td>
<td>58.50ab</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>16.12bcd</td>
<td>48.62b</td>
<td>0.41abc</td>
<td>15.20cd</td>
<td>58.25ab</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td>17.90ab</td>
<td>51.50a</td>
<td>0.37bc</td>
<td>17.03b</td>
<td>58.75ab</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>19.75a</td>
<td>52.12a</td>
<td>0.36c</td>
<td>19.02a</td>
<td>50.50a</td>
</tr>
</tbody>
</table>

Means followed by same letter are not significantly different at P<0.05 probability using Duncan’s test.

3.6. Chl. (a)

Effects of the interaction between GA$_3$ and BA was significant (p<0.01) and also effects of GA$_3$ and BA on chl. (a) was non significant (Table 1). Results showed that, 200 mg L$^{-1}$ BA, 100 mg L$^{-1}$ GA$_3$ + 200 mg L$^{-1}$ BA and 200 mg L$^{-1}$ GA$_3$ + 200 mg L$^{-1}$ BA cause increased chl. (a) of False aralia as 47.57, 35.83 and 20.25% compared to control treatment (Table 3). Results related to attribution, showed chlorophyll of leaf that bean applicated with of GA$_3$ and BA had significant effects in comparison to control treatment. The results herein are agreement with the finding of Mousa et al. (2001) on *Nigella sativa*, Shedeed et al. (1991) and Rawia and Bedour (2006) they mentioned that plant growth regulators were more effective than kinetin in increasing photosynthetic pigments in croton leaves. These results adapted with results of Rahbarian et al. (2014) and Salehi Sardoei et al. (2014b) about the effects of GA$_3$ on increased of chlorophyll and carotenoids contents.

3.7. Chl. (b)

Effects of GA$_3$ and BA was significant (p<0.01), also interaction effect on chl. (b) was non significant (Table 1). Results showed that, 200 mg L$^{-1}$ BA, 100 mg L$^{-1}$ GA$_3$ + 100 mg L$^{-1}$ BA and 100 mg L$^{-1}$ GA$_3$ + 200 mg L$^{-1}$ BA cause increased chl. (b) of False aralia as 15.65, 6.52 and 3.26% compared to control treatment (Table 3).

3.8. Total chl. (a+b)

Effects of level of GA$_3$ (p<0.05), and BA and the interaction level of GA$_3$ and BA (p<0.01) on Total chl. a+b was significant (Table 1). Results showed that, 200 mg L$^{-1}$ BA, 100 mg L$^{-1}$ GA$_3$ + 200 mg L$^{-1}$ BA, 100 mg L$^{-1}$ BA, 200 mg L$^{-1}$ GA$_3$ + 200 mg L$^{-1}$ BA and 200 mg L$^{-1}$ GA$_3$ + 100 mg L$^{-1}$ BA increased total chl. a+b of False aralia as 38.03, 26.17, 15.60, 12.50 and 11.08% compared to control treatment (Table 3).
Table 3
Effect of Foliar application of GA\textsubscript{3} and BA on the photosynthetic pigments of False aralia (Dizygotheca elegansissima) plant, 120 days after spray.

<table>
<thead>
<tr>
<th>GA\textsubscript{3}</th>
<th>BA</th>
<th>Chl. (a)</th>
<th>Chl. (b)</th>
<th>Total Chl. a+b</th>
<th>Carotenoids</th>
<th>Sumpigments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>10.91c</td>
<td>4.60bc</td>
<td>15.51b</td>
<td>2.98bc</td>
<td>18.50c</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>13.23abc</td>
<td>4.70bc</td>
<td>17.93ab</td>
<td>3.72abc</td>
<td>21.41b</td>
</tr>
<tr>
<td>0</td>
<td>200</td>
<td>16.10a</td>
<td>5.32a</td>
<td>21.41a</td>
<td>3.92ab</td>
<td>25.33a</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>11.40bc</td>
<td>4.49bc</td>
<td>15.89b</td>
<td>3.47abc</td>
<td>19.03ab</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>12.09bc</td>
<td>4.90ab</td>
<td>17b</td>
<td>2.79c</td>
<td>19.78ab</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>14.82ab</td>
<td>4.75abc</td>
<td>19.57ab</td>
<td>4.11a</td>
<td>23.96a</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>12.16bc</td>
<td>4.14c</td>
<td>16.30b</td>
<td>3.40abc</td>
<td>19.70ab</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td>12.76abc</td>
<td>4.47bc</td>
<td>17.23ab</td>
<td>3.40abc</td>
<td>20.64ab</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>13.12abc</td>
<td>4.33bc</td>
<td>17.45ab</td>
<td>3.63abc</td>
<td>21.09b</td>
</tr>
</tbody>
</table>

Means followed by same letter are not significantly different at P<0.05 probability using Duncan’s test.

3.9. Carotenoids
Results showed that, 100 mg L-1 GA\textsubscript{3} + 200 mg L-1 BA increased carotenoids of False aralia as 37.91% compared to control treatment.

3.10. Sumpigments
Effects of BA and the interaction was significant (p<0.01) also effect of GA\textsubscript{3} on sumpigments was non significant (Table 1). Results showed that, 200 mg L-1 BA and 100 mg L-1 GA\textsubscript{3}+ 200 mg L-1 BA increased sumpigments of False aralia as 36.91 and 29.51% compared to control treatment (Table 3). Results related to attribution, showed chlorophyll of leaf that bean applicated with GA\textsubscript{3} and BA has significant effect with control treatment. These results adapted with results of Rahbarian et al. (2014) and Rahbarian et al. (2014); Salehi Sardoei (2014a) on effects of GA\textsubscript{3} on increase of growth parameters, chlorophyll and carotenoids contents.

References

How to cite this article: Salehi Sardoei, A., Zarinkolah, M., Alavi, S.M.H., 2018. Response of False Aralia Plant to Gibberellic Acid and Benzyladenine Application. International Journal of Advanced Biological and Biomedical Research, 7(1), 47-52.

Submit your next manuscript to CASRP Central and take full advantage of:
- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at http://ijabbr.com