Prediction of the Weight and Number of Eggs in Mazandaran Native Fowl Using Artificial Neural Network

Soudabeh Semsarian¹, Morad Pasha Eskandari Nasab¹, Saeed Zarehdaran², Amir Ahmad Dehghani³

¹In order, M.sc. student and faculty member of Agricultural Science University of Zanjan, Zanjan, Iran
²Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Gorgan, Iran
³Department of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Introduction

Traditional poultry production has changed to a considerable industry after few decades. Now, poultry industry is one of the main sectors to obtain the required protein for human consumption. Prediction of the weight and number of eggs according to economic traits can improve the efficiency of production and the profit of producers. In present study, the weight and number of eggs in Mazandaran native fowl were predicted using artificial neural network (ANN). The information of BW at birth, 8 and 12 weeks of age, weight and age at sexual maturity and the polymorphism of prolactin gene were used for the prediction. The results showed that ANN is reliable method for predicting the weight and number of eggs based on available information.
human brain. Artificial neural networks are usually organized by three layers as follows:

- **Input layer:** It is the first layer in neural networks and receives resource out of the system.

- **Hidden layer:** It is located between input and output layers. In this layer, the process of calculating is conducted on input data and the results gained are transferred to the output layer.

- **Output layer:** It is the last layer in artificial neural networks and it is similar to independent layers in regression model (3).

In a research modeling data related to Sprague-dawley rate was compared to regression method and neural network. The results gained showed that both methods can predict weight in a suitable manner. Rash et al. (2006) compared modeling of Gompertz non-linear regression equation and modeling of neural network using a set of data related to growth of chickens. They concluded that coordination of artificial network model for curve of growth of chickens is relatively better than Gompertz model. Tamhouras Pour (2011) used an artificial neural network for explaining increase in weight of sheep which had been done through multiforms of genes, weight and type of birth. In this model, Multi-form of gens GH, PIT-1, GDF-8, GDF-9, Leptin, Calpain and Calpastatin, birth weight and type were all used as input data. Coordination of model was tested using MSR, R2 and Bias methods. Based on the results gained, Tamhouras Pour reported that neural networks model is a suitable tool for recognizing patterns related to data in order to predict growth in form of average increase in daily weight.

Bahreini Behzadi and Eslaminejad (2010) compared two methods of artificial neural network and non-linear regression in predicting sheep growth. After comparing results of various regression performance and neural network model, they concluded that the network model is more suitable and more accurate. Tayebi et al. (2009) predicted process of eggs in time horizons by two models of neural network and ARCH model. They showed that the rate predicted by neural networks have more accuracy in minimizing predicting error in most cases, especially in long-term time horizons. Therefore, efficient and effective tools are able to provide every kind of prediction from the existence of fluctuation and variable rate of strategic materials such as egg in line with taking economic policies which are consistent with marketing condition. Since there has been no study on applying neural network in predicting weight and number of producing eggs using data related to other features like production, reproduction, multiform gens and Prolaktin gen, in this research using data of economic features related to oviparous eggs, predicting weight and number of eggs can be investigated using artificial neural network.

Material and Methods

In this research, blood of 138 native hens was taken out and then genotype was determined for Prolaktin gen. records used contained weight of sexual maturity, age of sexual maturity, number of eggs, egg weight, order of giving birth to chicken and birth weight and age period of 8 weeks and 12 weeks. For predicting number of producing eggs by artificial neural network, input data included weight and sexual maturity age, weight of egg, order of giving birth to chicken, birth weight, 8 and 12 weeks age and for predicting producing egg weight by artificial neural network, input data contained weight and sexual maturity age, number of eggs, order of giving birth to chicken, birth weight and 8 and 12 weeks age.

Table 1: Features and values measures in native hen

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Minimum</th>
<th>Standard deviation</th>
<th>Mean</th>
<th>Number</th>
<th>Trait</th>
</tr>
</thead>
<tbody>
<tr>
<td>41/75</td>
<td>28/65</td>
<td>2/63</td>
<td>35/84</td>
<td>158</td>
<td>Birth weight(1gr)</td>
</tr>
<tr>
<td>880</td>
<td>380</td>
<td>107/52</td>
<td>689/80</td>
<td>158</td>
<td>Body weight at 8 weeks(gr)</td>
</tr>
<tr>
<td>1420</td>
<td>700</td>
<td>150/74</td>
<td>1099/80</td>
<td>158</td>
<td>BW at 12 weeks</td>
</tr>
<tr>
<td>180</td>
<td>121</td>
<td>12/91</td>
<td>141/91</td>
<td>158</td>
<td>Age at sexual maturity(day)</td>
</tr>
<tr>
<td>2500</td>
<td>1370</td>
<td>188/72</td>
<td>1837/14</td>
<td>158</td>
<td>weight at sexual maturity(gr)</td>
</tr>
<tr>
<td>38</td>
<td>5/5</td>
<td>4/82</td>
<td>13/79</td>
<td>158</td>
<td>egg number</td>
</tr>
<tr>
<td>62/5</td>
<td>39/06</td>
<td>3/95</td>
<td>49/26</td>
<td>158</td>
<td>egg weight(gr)</td>
</tr>
</tbody>
</table>

In order to design neural network, first data were divided to 80 and 20 percents for training and testing data. Then, using relation available data values were standardized and then 10 input neurons were considered for independent variables and 1 output neuron was considered which is weight and the other one is number of eggs. Then types of neural network were tested containing multilayered Prosperon network.
radial basis function and element. Also, different types of threshold functions were used. To investigate the accuracy of the neural network method, analyzing statistics were applied such as R2 and RMSE.

Results and Discussion

Figure 1 shows neural network structure designed. The results showed that among different neural networks, multilayer Prosperon with two hidden layers and four neurons in each layer provides the best solution (answer). Also, sigmoid threshold function provided accurate answers for hidden neurons.

Figures 2 and 3: show values calculated compared to observational values of average weight of eggs for training and testing data, respectively. According to these images, it is clear that neural network conducted this measure with a suitable accuracy.
Figures 4 and 5: also show values calculated compared to observational values of number of eggs for training and testing data, respectively. According to these images, it is clear that neural network conducted this measure with a suitable accuracy.

References

Tahmoorespur, M., Ahmadi. H., 2011. A neural network model to describe weight gain of sheep from genes polymorphism, birth weight and birth type. 3rd International Conference on Sustainable Animal Agriculture for Developing Countries, 08-23.

Jadali, F., Sharifi, M., Jarollahi, A., Nahidi, S., 2009. C-Reactive protein And Lactate Dehydrogenase in Serum and Cerebrospinal Fluid in Rapid and Early Diagnosis of

How to cite this manuscript: Soudabeh Semsarian, Morad Pasha Eskandari Nasab, Saeed Zarehdaran, Amir Ahmad Dehghani. Prediction of the Weight and Number of Eggs in Mazandaran Native Fowl Using Artificial Neural Network. International Journal of Advanced Biological and Biomedical Research 5(3), 2017, 133-137.

