Document Type: Original Article

Authors

1 Department of veterinary medicine faculty of veterinary, Islamic Azad university of Garmsar, Garmsar, Iran

2 Immunology department, medical science school, university of Tehran, Tehran, Iran

10.33945/SAMI/IJABBR.2019.2.7

Abstract

Breast cancer is a public health concern among the women. iNOS is stated by the effect of various inflammatory factors and is thus called inducible NOS. Investigating iNOS expression is a potent tool for understanding effective molecular parameters in tissue and cellular responses to external factors. In this research study, iNOS expression in mice with breast cancer was investigated and the effects of various doses of indomethacin on the iNOS gene expression in breast tumors was evaluated.
4T1 cells were grown in RPMI 1640 Medium. 200 µl of cell suspension (107 cells)were injected into the mice right flank, subcutaneously. 35 Balb/C albino mice divided into five groups each group consist of 7 mice. First group was healthy control group, second group was tumor control, and the 3rd, 4th and 5th groups were treated by 25μg, 50μg and 100μg of indomethacin, respectively. The rate of breast tumor growth was measured in treated groups for two months. The levels of iNOS gene expression was determined using real time RT-PCR technique.
Our results demonstrated, iNOS expression in tumor tissue increased with the growth of breast cancer cells. Furthermore, Administration of 25μg and 100μg indomethacin neither had significant effect on breast tumor growth nor effect on iNOS gene expression. While 50μg indomethacin decreased the tumor growth (P>0.05) and decreased iNOS gene expression.
Further studies such as evaluating the effects of indomethacin on the other anti-tumor immunosuppressing factor and additional tests western blot, flow cytometry and immunohistochemistry recommended in order to obtain more practical findings.

Keywords

Main Subjects

Ambs, S, Glynn, SA. (2011). Candidate pathways linking inducible nitric oxide synthase to a basal-like transcription pattern and tumor progression in human breast cancer. Cell Cycle. 10:619–624.

Ambs, S, Merriam, WG, Bennett, WP, Felley-Bosco, E, Ogunfusika, MO, Oser, SM, Klein, S, Shields, PG, Billiar, TR, Harris, CC. (1998). Frequent nitric oxide synthase-2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression. Cancer Res. 58:334–41.

Ambs, S, Glynn, SA. (2011). Candidate pathways linking inducible nitric oxide synthase to a basal-like transcription pattern and tumor progression in human breast cancer. Cell Cycle. 10(4):619-624.

Anttila, MA, Voutilainen, K, Merivalo, S, Saarikoski, S, Kosma, VM. (2007). Prognostic significance of iNOS in epithelial ovarian cancer. Gynecologic oncology. 105(1):97-103.

‏Augustine, D, Sekar, B, Murali, S, Ramesh, M, Madhavan, RN, Patil, SG, Rao, RS. (2015). Expression of inducible nitric oxide synthase in carcinomas and sarcomas affecting the oral cavity. South Asian j cancer. 4(2):78.

Babykutty, S, Suboj, P, Srinivas, P, Nair, AS, Chandramohan, K, Gopala, S. (2012). Insidious role of nitric oxide in migration/invasion of colon cancer cells by upregulating MMP-2/9 via activation of cGMP-PKG-ERK signaling pathways. Clin Exp Metastasis. 29:471–92.

Barani, R, Motalleb, G, Maghsoudi, H. (2016). Evaluation of iNOS Expression in Esophageal Cancer Patients. Gastrointestinal tumors, 3(1), 44-58.

Basudhar, D, Glynn, S, Greer, M, Somasundaram, V, No, JH, Scheiblin, DA, Cheng, RY. (2018). Role of NOS2-COX2 crosstalk in tumor microenvironment of estrogen receptor-negative breast cancer and its therapeutic implications.‏

Basudhar, D, Somasundaram, V, de Oliveira, GA, Kesarwala, A, Heinecke, JL, Cheng, RY, Glynn, SA, Ambs, S, Wink, DA, Ridnour, LA. (2017). Nitric oxide synthase-2-derived nitric oxide drives multiple pathways of breast cancer progression. Antioxid redox signal. 26(18):1044-1058.‏

Bonanni, B, Puntoni, M, Cazzaniga, M, Pruneri, G, Serrano, D, Guerrieri-Gonzaga, A, Gennari, A, Trabacca, MS, Galimberti, V, Veronesi, P, Johansson, H, Aristarco, V, Bassi, F, Luini, A, Lazzeroni, M, Varricchio, C, Viale, G, Bruzzi, P, Decensi, A. (2012). Dual Effect of Metformin on Breast Cancer Proliferation in a Randomized Presurgical Trial, J clin oncol. 30:2593.

Bonavida, B, editor. Nitric oxide (NO) and cancer. Springer/Humana Press; 2010.

Broniowska, KA, Hogg, N. (2010). Differential mechanisms of inhibition of glyceraldehyde-3-phosphate dehydrogenase by S-nitrosothiols and NO in cellular and cell-free conditions. Am J Physiol Heart Circ Physiol. 299(4):1212-1219.

Bulut, AS, Erden, E, Sak, SD, Doruk, H, Kursun, N, Dincol, D. (2005). Significance of inducible nitric oxide synthase expression in benign and malignant breast epithelium:an immunohistochemical study of 151 cases. Virchows Arch. 447:24–30.

Burke, AJ, Sullivan, FJ, Giles, FJ, Glynn, SA. (2013). The yin and yang of nitric oxide in cancer progression. Carcinogenesis. 34:503–512. 

Carrasco-Pozo, C, Castillo, RL, Beltrán, C, Miranda, A, Fuentes, J, Gotteland, M. (2016). Molecular mechanisms of gastrointestinal protection by quercetin against indomethacin-induced damage: role of NF-κB and Nrf2.  J nutrit biochem.  27:289-298.‏

Chen, WL, Feng, HJ, Li, JS, Li, HG. (2007). Expression and pathological relevance of inducible nitric oxide synthase in osteosarcoma of the jaws. Int j oral maxillofacial surgery. 36(6):541-4.

Cianchi, F, Cortesini, C, Fantappiè, O, Messerini, L, Schiavone, N, Vannacci, A, Perna, F. (2003). Inducible nitric oxide synthase expression in human colorectal cancer: correlation with tumor angiogenesis.  Am j pathology. 162(3):793-801.‏

Eyler, CE, Wu, Q, Yan, K, MacSwords, JM, Chandler-Militello, D, Misuraca, KL, Lathia, JD, Forrester, MT, Lee, J, Stamler, JS, Goldman, SA, Bredel, M, McLendon, RE, Sloan, AE, Hjelmeland, AB, Rich, JN. (2011). Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell. 146:53–66.

Forrester, K, Ambs, S, Lupold, SE, Kapust, RB, Spillare, EA, Weinberg, WC, Felley-Bosco, E, Wang, XW, Geller, DA, Tzeng, E, Billiar, TR, Harris, CC. (1996). Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci U S A.  93: 2442–2447.

Förstermann, U, Schmidt, HH, Pollock, JS, Sheng, H, Mitchell, JA, Warner, TD, Nakane, M, Murad, F. (1991). Isoforms of nitric oxide synthase characterization and purification from different cell types. Biochem pharmacol. 42(10), 1849-1857.‏

Fulton, AM. (1984). In vivo effects of indomethacin on the growth of murine mammary tumors. Cancer Res. 44(6):2416-20.

Ganai, S, Arenas, RB, Forbes, NS. (2009). Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. Br j cancer. 101(10):1683.‏

Garrido, P, Shalaby, A, Walsh, EM, Keane, N, Webber, M, Keane, MM, Sullivan, FJ, Kerin, MJ, Callagy, G, Ryan, AE, Glynn, SA. (2017). Impact of inducible nitric oxide synthase (iNOS) expression on triple negative breast cancer outcome and activation of EGFR and ERK signaling pathways. Oncotarget. 8(46):80568.‏

Glynn, SA, Boersma, BJ, Dorsey, TH, Yi, M, Yfantis, HG, Ridnour, LA, Martin, DN, Switzer, CH, Hudson, RS, Wink, DA, Lee, DH, Stephens, RM, Ambs, S. (2010). Increased NOS2 predicts poor survival in estrogen receptor-negative breast cancer patients. J Clin Invest. 120:3843–54.

Glynn, SA, Prueitt, RL, Ridnour, LA, Boersma, BJ, Dorsey, TM, Wink, DA, Goodman. JE, Yfantis. HG, Lee. DH. Ambs, S. (2010). COX-2 activation is associated with Akt phosphorylation and poor survival in ER-negative, HER2-positive breast cancer. BMC cancer. 10(1):626.‏‏

Granados-Principal, S, Liu, Y, Guevara, ML, Blanco, E, Choi, DS, Qian, W, Patel, T, Rodriguez, AA, Cusimano, J, Weiss, HL, Zhao, H, Landis, MD, Dave, B, Gross, SS, Chang, JC. (2015). Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer. Breast Cancer Res. 17(1):25.‏

Grimm, EA, Ellerhorst, J, Tang, CH, Ekmekcioglu, S. (2008). Constitutive intracellular production of iNOS and NO in human melanoma: possible role in regulation of growth and resistance to apoptosis. Nitric oxide. 19(2):133-137.‏

Gürsoy, AA, Ylmaz, F, Nural, N, Kahriman, I, Yigitbaş, C, Erdöl, H, Kobya Bulut, H, Yeşilçiçek, K, Karadeniz Mumcu, H, Hindistan, S. (2009). "A different approach to breast self-examination education: daughters educating mothers creates positive results in Turkey.Cancer nursing. 32(2):127-134.‏

Härtel, C, von Puttkamer, J, Gallner, F, Strunk, T, Schultz, C. (2004). Dose‐dependent immunomodulatory effects of acetylsalicylic acid and indomethacin in human whole blood: potential role of cyclooxygenase‐2 inhibition. Scand J Immunol. 60(4):412-420.‏

Hussain, M, Javeed, A, Ashraf, M, Al-Zaubai, N, Stewart, A, Mukhtar, MM. (2012). Non-steroidal anti-inflammatory drugs, tumour immunity and immunotherapy. Pharmacol Res. 66(1):7-18.‏

Jazayeri, SB, Saadat, S, Ramezani, R, Kaviani, A. (2015). Incidence of primary breast cancer in Iran: Ten-year national cancer registry data report. Cancer epidemiol. 39(4):519-527.‏

Juang, SH, Xie, K, Xu, L, Wang, Y, Yoneda, J, Fidler, IJ. (1997). Use of retroviral vectors encoding murine inducible nitric oxide synthase gene to suppress tumorigenicity and cancer metastasis of murine melanoma. Cancer biotherapy radiopharmaceuticals. 12(3):167-75.

Kohli, M, Yu, J, Seaman, C, Bardelli, A, Kinzler, KW, Vogelstein, B, Lengauer, C, Zhang, L. (2004). SMAC/Diablo-dependent apoptosis induced by nonsteroidal anti-inflammatory drugs (NSAIDs) in colon cancer cells. Proc Natl AcadSci USA. 101:16897–16902.

Lange, A, Gustke, H, Glassmeier, G, Heine, M, Zangemeister-Wittke, U, Schwarz, JR, Schumacher, U, Lange, T. (2011). Neuronal differentiation by indomethacin and IBMX inhibits proliferation of small cell lung cancer cells in vitro. Lung cancer.  74(2):178-187.

Li, LG, Xu, HM. (2005). Inducible nitric oxide synthase, nitrotyrosine and apoptosis in gastric adenocarcinomas and their correlation with a poor survival. World j gastroenterol: WJG. 11(17):2539.

Lin, SK, Kuo, MYP, Wang, JS, Lee, JJ, Wang, CC, Huang, S, Shun, CT, Hong, CY. (2002). Differential regulation of interleukin-6 and inducible cyclooxygenase gene expression by cytokines through prostaglandin-dependent and-independent mechanisms in human dental pulp fibroblasts. J endodont. 28(3), 197-201.‏

Loibl, S, Buck, A, Strank, C, von Minckwitz, G, Roller, M, Sinn, HP, Schini-Kerth, V, Solbach, C, Strebhardt, K, Kaufmann, M. (2005). The role of early expression of inducible nitric oxide synthase in human breast cancer. Eur J Cancer. 41:265-71.

Massi, D, Franchi, A, Sardi, I, Magnelli, L, Paglierani, M, Borgognoni, L, Maria Reali, U, Santucci, M. (2001). Inducible nitric oxide synthase expression in benign and malignant cutaneous melanocytic lesions. J Pathol. 194:194–200.

Narisawa, T, Sato, M, Tani, M, Kudo, T, Takahashi, T, Goto, A. (1981). Inhibition of Development of Methylinitrosourea-induced Rat Colon Tumors by Indomethacin Treatment. Cancer Res. 41(5):1954-7.

Nathan, C, Xie, QW. (1994). Nitric oxide synthases: roles, tolls, and controls. Cell. 78:915–918. 

Nathan, C, Xie, QW. (1994). Regulation of biosynthesis of nitric oxide. J Biol Chem. 269:13725–13728.

Okayama, H, Saito, M, Oue, N, Weiss, JM, Stauffer, J, Takenoshita, S, Wiltrout, RH, Hussain, SP, Harris, CC. (2013). NOS2 enhances KRAS-induced lung carcinogenesis, inflammation and microRNA-21 expression. Int J Cancer. 132:9–18.

Pang, Y, Gara, SK, Achyut, BR, Li, Z, Yan, HH, Day, CP, Weiss, JM, Trinchieri, G, Morris, JC, Yang, L. (2013). TGF-β signaling in myeloid cells is required for tumor metastasis. Cancer Discov. 3:936–51.

Pervin, S, Singh, R, Hernandez, E, Wu, G, Chaudhuri, G. (2007). Nitric oxide in physiologic concentrations targets the translational machinery to increase the proliferation of human breast cancer cells: involvement of mammalian target of rapamycin/eIF4E pathway. Cancer Res. 67:289–299.

Puhakka, A, Kinnula, V, Näpänkangas, U, Säily, M, Koistinen, P, Pääkkö, P, Soini, Y. (2003). High expression of nitric oxide synthases is a favorable prognostic sign in non‐small cell lung carcinoma. Apmis. 111(12):1137-46. 

Qin, S, Xu, C, Li, S, Yang, C, Sun, X, Wang, X, Tang, SC, Ren, H. (2015). Indomethacin induces apoptosis in the EC109 esophageal cancer cell line by releasing second mitochondria-derived activator of caspase and activating caspase-3. Molecul Med Reports. 11(6):4694-4700.‏

Saltzman, D, Augustin, L, Leonard, A, Mertensotto, M, Schottel, J. (2018). Low dose chemotherapy combined with attenuated Salmonella decreases tumor burden and is less toxic than high dose chemotherapy in an autochthonous murine model of breast cancer. Surgery. 163(3):509-514.‏

Sen, S, Jensen, K, Brennan, K, Ramadoss, S, Chaudhuri, G. (2017). Chemoprotective and Chemosensitizing Effects of Nitric Oxide and Other Biologically Active Gases in Breast Cancer Chemotherapy: Potential Implications. In Nitric Oxide (Donor/Induced) in Chemosensitizing. 169-178.

Shacter, E, Arzadon, GK, Williams, J. (1992). Elevation of interleukin-6 in response to a chronic inflammatory stimulus in mice: inhibition by indomethacin. Blood. 80(1):194-202.

Switzer, CH, Cheng, RY, Ridnour, LA, Glynn, SA, Ambs, S, Wink, DA. (2012). Ets-1 is a transcriptional mediator of oncogenic nitric oxide signaling in estrogen receptor-negative breast cancer. Breast Cancer Res. 14:R125.

Thomsen, LL, Lawton, FG, Knowles, RG, Beesley, JE, Riveros-Moreno, V, Moncada, S. (1994). Nitric oxide synthase activity in human gynecological cancer. Cancer Res. 54(5):1352-4.

Thomsen, LL, Miles, DW, Happerfield, L, Bobrow, LG, Knowles, RG, Moncada, S. (1995). Nitric oxide synthase activity in human breast cancer. Br J Cancer. 72:41-4.

Vakkala, M, Kahlos, K, Lakari, E, Paakko, P, Kinnula, V, Soini, Y. (2000). Inducible nitric oxide synthase expression, apoptosis and angiogenesis in in situ and invasive breast carcinomas. Clin Cancer Res. 6:2408-16.

Vahora, H, Khan, MA, Alalami, U, Hussain, A. (2016). The potential role of nitric oxide in halting cancer progression through chemoprevention. J cancer prevent. 21(1):1.

Vannini, F, Kashfi, K, Nath, N. (2015). The dual role of iNOS in cancer. Redox biology. 6:334-43.

Wang, B, Wei, D, Crum, VE, Richardson, EL, Xiong, HH, Luo, Y, Huang, S, Abbruzzese, JL, Xie, K. (2003). A novel model system for studying the double-edged roles of nitric oxide production in pancreatic cancer growth and metastasis. Oncogene. 22(12):1771.

Xie, Q, Nathan, C. (1994). The high-output nitric oxide pathway: role and regulation. J Leukoc Biol. 56:576–582.

Yiannakopoulou, EC. (2015). Aspirin and NSAIDs for breast cancer chemoprevention. Eur J Cancer Prevent. 24(5):416-421.‏