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ABSTRACT

Background: Many theories and mathematical simulations have been proposed
concerning urine concentrating mechanism (UCM). Due to significant effect of the tubule
and vessel architecture in concentrating mechanism, the numerical analysis of UCM
through a 3-Dimensional structure might be the answer to find a better consistency
between the experimental and theoretical results.

Methods: In this paper we have investigated the effects of structural characteristics of
the tubules and vessels on the urine concentrating mechanism in the outer medulla
(OM) by developing a simple three-dimensional mathematical model. This model is a
framework to attain a converged numerical solution for the momentum and species
transport equations along with their stiff and coupled boundary conditions based on
standard expressions for trans-tubular solutes and water transports on tubule’s
membrane.

Results: The model structure and the number of the involved tubules have been
assumed to be as simple as possible. The effects of slip boundary condition on
membrane, Darcy permeability and solute’s diffusivity of the intermediate media on
UCM have been studied. It has been shown that this approach can simply simulate
preferential interactions and tubule’s confinement by radial diffusion coefficients.
Conclusions: All in all, the feasibility of the idea of completely 3-D modeling by
employing the concept of diffusion coefficient and Darcy permeability has been explored
and validated.

¥> ™" f3aDimensional modeling, Interstitium physical properties, Structural
characteristics

Se—""T— ... —<'e most complicated organs of human body
[1]. Urine concentrating mechanism
(UCM), as the main process in regulating
water excretion, has been widely studied
by both experimental and theoretical

The ability to maintain the osmolality
balance between blood plasma and the
outlet urine as one the fascinating
features of kidney makes it one of the
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approaches [2]. Since some physiological
characteristics of UCM can be easily
explained, developing novel
mathematical methods seems crucial to
gain a better understanding of this
process [3, 4].

Longitudinal section of kidney has
three main layers with different
characteristics: cortex, outer medulla and
inner medulla. In spite of an isosmotic fluid
flow with respect to arterial blood within
the cortex, a cortico-papillary gradient of
osmolality within the medulla is thought to
be the most reliable explanation for the
higher osmolality in outlet urine. There are
various theories, which have tried to
explain this phenomenon. According to the
countercurrent multiplication mechanism,
active reabsorption of solute from
ascending tubules is the reason for the
osmotic pressure difference between
descending and ascending limbs of the loop
of Henle [5, 6]. This mechanism is able to
explain osmotic gradient in outer medulla
but steepest gradient in inner medulla
could not be explained by this theory,
because long ascending tubules in this
region have no active transepithelial
transport [7-10].

According to Stephenson [11] and Kokko
and Rector [12], the interstitium has much
higher wurea concentration than NaCl
concentration and the fluid in Henle’s loop
has much higher NaCl concentration than
urea concentration. This hypothesis, known
as the passive mechanism, is critically
dependent on specific loop of Henle
permeabilities to NaCl and urea. Although
the validation of mathematical models
based on the passive mechanisms with
experimental models on urine osmolality
showed their ability to predict, but the
inconsistency between aforementioned
mathematical models' results and
experimentally measured urine osmolality
has actuated researchers to study the
effects of anatomic complexity.

Wexler and colleagues [13, 14]
investigated the effect of 3-D architecture

of renal medulla on urine concentrating
mechanism. They attributed weighted
factors (value between 0-1) to each
tubule and vessel to describe the
distances and also the amount of solute
exchange between them. In their model,
there is no intermediate environment
like medullary interstitium for solute
exchange. Therefore, each tubule,
according to the weighted factor, directly
interacts with nearer vessels. The need
for more acute models of three-
dimensional structure of tubules and
vasa recta in inner and outer medulla has
led many physiological and mathematical
researchers to reconstruct computer-
based three-dimensional architecture of
the renal medulla and investigate its role
in urine concentrating mechanism [15,
16].

The more precise studies in this area
have been done by Layton's group [17, 18].
To simulate the 3-D organization of tubules
and vessels in the renal medulla, they
introduced a region approach based on
explanatory description of physiologist
investigations [19-21]. In this approach,
there are some distinct regions in every
medullary level in which different tubules
and vasa recta are distributed between
them by a specific order. Spaces between
tubules and vasa recta are considered as
interstitial space, interstitial cells and
capillaries. Tubules and vessels exchange
solutes and water with surrounding
environment and not directly to one
another. It should be noted that each
region has constant solute concentrations
but these concentrations differ from one
another between regions. In their early
study, [22] divided the outer medulla cross
section in two regions, but they upgraded
it into four regions in their following work
[17] in order to have a more realistic
model. Their investigation in 2011 [23]
which also took into account the inner
medulla, is the most complete and
thorough 1-D mathematical simulation of
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renal which has been presented so far up
to our knowledge.

The diameter and length of nephron
tubules are in the order of micrometer
and millimeter, respectively, and because
of this significant dimensional difference,
previous researchers used a system of
one-dimensional equations to describe
this tissue mathematically [3, 23-28].
However, this assumption for medulla
environment, exterior to the tubules and
vasa recta, appears to be inconsistent
with anatomical and physiological
studies. As mentioned before, a region
approach was used to compensate the
effect of concentration gradients by
regionalization. However, again for each
region the concentration gradients are
considered unidirectional in the cortico-
medullary axis direction. Therefore, as

attested by other researchers,
regionalization cannot  thoroughly
compensate the effect of three-

dimensional species transport [22, 29].
Based on the complexity of tubule's
architecture revealed in anatomic and
physiological studies. It is recently
proposed [3, 4] a 3-D model to more
accurately simulate the UCM. They
introduced a detailed functional unit
based on specific configuration of
vascular bundles which is much closer to
the living renal tissue. The numerical
results showed agreement with tissue
slice experiments.

Since the nephron has a number of
distinct tubules with different membrane
transport properties, the steady state
model for the UCM consists of a high
order system of coupled and nonlinear
ODEs. Due to high values of hydraulic and
solute permeability of some renal
tubules, these equations are usually stiff.
Therefore the solving of these equations
in 3-D seems very critical as the
complexity of the physical and
architectural properties of the outer
medulla cannot be thoroughly simulated
with one dimensional models [4, 22].

The principle goal of this study was to
describe a simple 3-D numerical model of
the urine concentrating mechanism as a
framework to study how the structural
properties of outer medulla might affect
operational indexes of UCM including
mass transfer and hydrodynamic
regimes. In the following sections, a
central core model of outer medulla has
been represented and then its
formulation, parameters and boundary
conditions have been described and
discussed in details. It should be noted
that in this simulation, the main focus
was on converging and finding the
numerical solution for the 3-D, stiff and
coupled set of equations in order to
investigate the effect of structural
properties on UCM. In addition to the
base case profiles in which 3-D and 1-D
numerical solutions have been compared,
the solute gradients in a cross section of
medullary interstitium have been studied
for its different physical properties.

ta f-$"<fZ fef $-S't-

In this study, the central core (CC)
formulation which was proposed in
previous [11], has been used. As discussed
before, the purpose of this study is just
simulating UCM in a model structure as
simple as possible; therefore, the significant
importance of vasa recta has been
overlooked. An important fact about vasa
recta shown by Layton and Layton [17] is
that vasa recta tend to track concentrations
of interstitial fluid. Another fact is that both
ascending vasa recta (AVRs) and
descending vasa recta (DVRs) membranes
have sufficiently high water and solute
permeability. Considering these findings,
computational costs and 3-D structural
complications,  using  central  core
assumption and simplifying vasa recta by
an intermediate porous medium, have been
seemingly convincing enough at the
moment. Therefore, all constituents of
medulla other than tubules, e.g ascending
and descending vasa recta, interstitial cells,
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interstitial spaces and capillaries have been
represented as one porous intermediate
compartment.

One short-looped nephron, including
the descending Henle's loop (DHL),
ascending Henle's loop (AHL) and
Collecting duct (CD) in the outer medulla
(OM) and Distal tubule (DT) in cortex, has
been considered as a filtration unit. It
should be also noted that this simulation
has been just considered as a framework
that more  detailled mathematical
simulations has been reported before [30] .

The schematic of the discussed model
structure is demonstrated in Figure 1, in
which the loop of Henle and CD may
exchange with each other through the outer

medullary interstitium (OMI). The DHL,
AHL and CD are oriented along the cortico-
medullary axis, which extends from x=0 at
the cortico-medullary boundary to x = Lom
at the OM-IM boundary. DT connects AHL
to CD and is located in the cortical
interstitium (CI) in which fluid is essentially
isosmotic to arterial blood. According to
literature, although many organic and
inorganic compounds are involved in UCM,
sodium, chloride, potassium and urea are
the most influential solutes. In this
simulation Na* (as a representative of both
NaCl and KCl), urea and water are assumed
to be involved in the mathematical
modeling [4, 31, 32].
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< %0 — "Stherdatic of central core model.Left: Tubules and surrounding interstitium, CI, Cortex
interstitium; MI, Medullary interstitium; DHL, Descending Henle's loop; AHL, Ascending Henle's loop;
DT, Distal tubule; CD, Collecting duct; Dashed lines: water permeable boundaries; Arrows: steady-
state flow directions. Right: Medulla cross-section showing connectivity between MI and other
tubules
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Conservation of mass (Eq. 1),
momentum equations (Eq. 2) and two
species transport equations (Eq. 3) are the
main  equations which might be
simultaneously solved in their 3-D form [4,
32-34].

Continuity equation:

7.V=0 (1)

Momentum transport equation (in 3
directions):

pV.V(V) = =P + w(V2V) 2)

Finally, two concentration equations
(for each k) represented the species
transport are as follows:

VVCk = Dk(VZCk) ,k - 1,2 (3)
Where the subscripts 1 and 2 are for
Na* and urea, respectively. In these

equations the terms V, P, G and Dx are the
3D velocity vector, fluid pressure,
concentration of solute k and diffusion
coefficient of solute k in the tubular or
interstitial fluid respectively. The” and#
are fluid density and fluid viscosity,
respectively.

The aforementioned momentum
equations are valid for the interior regions
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of each tubule while the outer medullary constant Na* and urea concentrations have
interstitium is modeled as a porous been set (Table 1). Moreover, pressure
compartment in which the momentum outlet boundary condition has been used at
equations for interstitial fluid could be the end of collecting duct (CD), as shown in
rewritten as: Table 1. Likewise, appropriate boundary
conditions for outer medullary interstitium

w = —kV.p (4) region should also be determined for the 3-
D structure. The model structure has been

Where « is Darcy permeability. As assumed to be representative of a renal
discussed in our previous study, solute's filtration unit and due to the symmetry, the
diffusivity in interstitial fluid can be used outer wall of medulla has been considered
to perfectly create and simulate the to be impermeable to solutes and
concept of radial concentration gradients interstitial fluid. It is showed [33] that the
[4]. It should be noted that in our previous effect of interstitial and solutes flow rate
study, OMI has been assumed not to be from the inner to the outer medulla on the
porous, but in current study we have result’s profiles is negligible. Thus, based

modeled the OMI as a porous on this notion and also for simplicity, this

compartment to find its effect on the UCM. model has been assumed to be closed at x
- ‘ ‘ = LOM, j.e.there is no convective flow at x =

tatgoundary ...%sTc—cee LOM into the medullary interstitium.
At the entrance of DHL, a steady mass

flow rate with parabolic profile and

f . Z 1 Beiéndary conditions [33]

Variable DHL@x=0 CD(@x=L?
F, (n—l> 10.0 -
min
Cpgt(MmM) 140.0 -
Cyrea(MM) 5.0 -
P(mmHg) 0 6.4
In OMI, the flow direction has been forces where solute flux has been
assumed to be toward the cortical determined by the solvent convection as
interstitium because of the dominant well as a combination of passive and active
number of ascending vasa recta. transport in which passive transtubular
Furthermore, due to the abundance of transport has been described by Kedem
blood vessels in the cortex, solutes quickly and Katchalsky model [35], while active
get carried away as they reach the cortico- transtubular  transport has followed
medullary boundary. Thus, zero diffusive Michaelis-Menten  kinetics. Therefore,

boundary condition has been used for

J i
: 1 fl v lute fl
solutes at the cortico-medullary boundary tra nstubular water flux, *, and solute flux,

[20]. 5 , can be written as:
Additionally, solutes and fluid fluxes on ' ' o
the tubule’ membrane are important Ji = hi[Zk RT(CH! — CL)oldposmi +

boundary conditions to specify the Pt — pMl (i = DHL,AHL,CD) (5)
interactions between tubules and their
surrounding interstitium. To this purpose, i — pi R.T(CC — ¢t
= - +
water flux has been formulated by both -]U C,”[Zk g ( k k) Posmi
. . . Pt — P (i=DT) (6)
pressure gradient and osmotic driven
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. . . i cMI . .
Ji = Ji(1 - o) (%255 + mi(c -
MI Vrl;zax,kcli .
A e O
DHL, AHL, CD) 7)

) . -\ {civcC!
T = Ji(1 - of) (S5
cry 4 VmaxkCi
G+l

)+ hi(ci -

(i=DT) (8)

Where for i-th tubule and solute k, Al is
hydraulic permeability, hl is passive
permeability, . is Staverman reflection
coefficient of the membrane, C. is the
concentration and P! is the pressure. The
last term in Equations 7 and 8 stands for

the active transport of solute k in i-th
tubule in which V.., is the maximum
rate of transport and K ,is Michaelis
constant. In the above equations, R; and T
are universal gas constant and absolute
temperature, respectively.
Furthermore, ¢,5,  is the osmotic
coefficient of solute k. Also, it should be
noted that in Equations 5 to 8, the positive8)
flux direction for both solutes and fluid
fluxes are assumed to be into the
medullary interstitium. The cortical
interstitium constants are presented in
Table 2. Likewise, model parameters, along
with their units and the physical constants
are listed in Tables 3, 4, respectively.

f . Z f Coitical interstitium properties [33]

Variab le

Value

Co! L (mM)

Cirea (MM)
P (mmHg)

140.0
5.0
0.0

tAUAZ " <*%0 ¢t—-S*t

The numerical solution of the
transport equations in the five domains
in our structure including DHL, AHL, DT,
CD and OMI is not a dilemma since mass
and momentum equations (Eq. 1 and Eq.
2) are independent of solute
concentrations. Besides, the velocity
dependence of transport equations (Eq.
3) does not complicate the solving
procedure. However, most of the
complexity within numerical solution is
due to solutes and water fluxes on
tubular membrane since membrane’s
water flux (Eq. 5 and Eq. 6) is a function
of both solute concentrations and
pressure. Additionally, solute fluxes (Eq.
7 and Eq. 8) are also a function of solute
concentrations as well as the water flux.
Therefore, membrane’s fluxes are
coupled with Eq. 1 to Eq. 3 which will
subsequently cause some complication
with stability of 3-D numerical modeling.

In order to mathematically solve these
coupled equations in our model, an
unstructured grid has been generated. As
shown in the Figure 2, prism cell shapes
have been used for meshing the inner
regions of tubules as well as the outer
medullary interstitium. It has been
depicted that the cells become bigger
when closer to the outer wall of OMI,
since the cells have to be smaller just in
the tubule’s neighboring regions.

Rayan was used to solve the flow field
and species transport equations. This
native code is an arbitrary polyhedral
grid co-located incompressible finite
volume solver. More explanation on the
features of Rayan can be found in [36].
Moreover, some of the other features of
Rayan like new search algorithms and
open boundary condition are also
reported in open literature [37, 38].
Rayan can solve steady and transient
flows along with scalar transport. It is
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also capable of handling dynamic meshes
arbitrary

using Eulerian-Lagrangian

m
o

approach.

B8 AE-08
X axis

Figure t&chematic of 3-D unstructured grid generated for outer medullary model structure

The general description of the
numerical method which has been used
for solving mass, momentum and species
transport equations (Eq. 1 to Eq. 3) in
this study, has been discussed in detail in
previous research when our native code,
Rayan, has been introduced [38]. It
should be mentioned that the particular
formulations for membrane’s fluid and
solutes fluxes has been introduced to the
main code as boundary conditions,
meaning that for simultaneously solving
zones together, the face of every
marginal prism cell on each side of
tubule's membrane should be linked to
that of at the other side in order that it
would be able to read the concentrations
and pressure data at either side to
compute fluxes. The direction of these
fluxes has been assumed to be normal to
the surface of marginal faces whereas no
slip assumption for hydrodynamic

boundary condition has been considered
to be in the tangential direction of the
membrane’s surface at both sides.

Instability and solution divergence
happened because of a rapid
concentration change at each of tubule’s
membrane side, using an under
relaxation factor for the membrane fluxes
in the model. This relaxation factor has
just transferred fraction of the flux’s
differences computed in the current
iteration to the next. Thus, it has been
contrived in the code so that, most
importantly, the solute concentrations of
the marginal cells have changed
gradually and caused  smoother
convergence of the numerical solution
ultimately, an appropriate value for this
factor has been treated by trial and error
in order to achieve minimum
computational costs.
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f . Z T Bask-case Parameters [33, 39]

Parameter DT AHL DHL MI CD
Ry (10712 (=) 15 0.0 171 i 5.0

v Pa.s
yor (10-7m/s) 0.1 161 161 - 0.4
Rurea (10°7m/s) 0.0 0.86 15 - 0.0
Viaxnat (1075 (o5) 0.93 6.1 0.0 - 0.0

_ l

Vnaxurea(1075(20)) 0.0 0.0 0.0 . 0.0
K maznar 105 (50) 0.075 0.15 0.0 - 0.0
Kmaxurea (1075 (5)) 0.075 0.15 0.0 - 0.0
Onat 1.0 1.0 0.96 - 1.0
Ourea 1.0 1.0 0.96 - 1.0
Dosma* 1.84 1.84 1.84 - 1.84
Bosm urea 1.0 1.0 1.0 - 1.0
Radius(10~5m) 12.0 10.0 8.0 32.0 12.0
Length(10™2m) 1.0 0.4 0.4 0.4 0.4
Dy o+ (10~°m?2/s) 15 15 15 15 15
Dyyoa (1079m?2 /) 1.38 1.38 1.38 1.38 1.38

f . Z T Physical constants [33, 39]

Ssec...fZ "f° Value
T, 310.15
kg
— 0.0006915
W)
k
o(-5) 99333
m
J
Ry(—2) 8.314
UAFe—Z—o feot Tco. . —oects orthogonal collocation method was used as

In this section, the results from three-
dimensional modeling of fluid and solute
transport in a nephron are discussed.
Previously defined base-case parameters
and appropriate boundary conditions,
guarantee steady-state solutions for water
and solute transport in the renal outer
medulla.

Additionally, for comparison purposes,
a native code developed before by authors
for 1-D modeling solute and water
transport in the renal outer medulla, has
been used [38]. Its boundary conditions
and parameters values were equal to those
mentioned in Table 1-4. Furthermore, the

the solution method.

Figures 3-6 depict the results of 3-D and
1-D simulations in which their Na* and
Urea concentration, pressure and velocity
data nearly have the same distribution and
are in a well agreement. However, there
are some differences between the profiles
of 3-D and 1-D results along the nephron’s
length. It could be said that in 1-D model,
OMI solute concentrations at every
medullary depth is considered uniform. In
other word, radial solute permeability in
interstitial fluid is infinitive because there
is no resistance for transport in radial
direction. On the contrary, in 3-D base case
simulation, the OMI radial diffusion
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coefficient has been assumed to have the
same values as tubular fluid. Furthermore,
as explained earlier, due to simplicity of
base case’s model structure, the Na* and

urea concentration distributions are fairly
reliable. Accordingly, they cannot be
compared with experimental data or
results from previous work [17].
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urea concentration (mM)

Descanding tubule
Ascending tubule
Distal Tubule
Collecting duct ;
10 model #

0.01

MNe phron length {m)

Figure x Hrea concentration distribution along nephron from entrance of DHL to the end of CD in 3-
D and 1-D model

uas & «elocity

Since most of the biological fluid
channels in human body are permeable
and micron sized, the validity of no slip
boundary condition on the channel wall
and its influence on UCM should be
checked [40] In kidney, when the
tubule's lumen exchanges fluid thorough
its membrane, tangential velocity of fluid
on the membrane surface practically is
not zero. It should also be mentioned that
investigating the slip effect at the
membrane’s surface on the
concentrations, velocity and pressure
distribution is just possible thorough 3-D
numerical simulation of UCM. In this
case, the tangential velocity on the
membrane has been changed from V, =

Oto V, =L (%) where L; is the slip

D.0015 =

§
T

Velocity (mis)

00005 e

length and nondimensionlized
tubule's radius.

Comparison between Na* and urea
concentration profiles of 3-D base-case
model, no-slip boundary condition, and
ones with dimensionless slip length equal
to 0.05 and 0.1 showed no difference.
Therefore, slip has no influence on
species concentrations along nephron’s
length but as shown in Figure 7, the
maximum velocity in the center of
tubules decreases by increasing slip
coefficient. ~ Similarly, the pressure
decreases as slip coefficient increases
(Figure 8). Thus, the most significant
effect of slip boundary condition is on the
pressure distribution along nephron’s
length and subsequently upstream
pressure, the glomerulus pressure.

by

—— Base case model
— — — 0.1 slip coelficient
0.05 slip coefficient

0.01
MNephron length (m)

1
0015 [ZE=F]

< %0 —y"8ffect of slip boundary condition on maximum velocity profiles along nephron
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pressure (Pa)

GO GY=E] T oz
Mephron length (m)

Figure z &ffect of slip boundary condition on pressure profiles along nephron

uadtd " F...— 7 T —ecte
OMI

The main objective of the current and
subsequent sections is to answer the
following questions: Is it possible to model
and simplify the complexity of OM],
containing ascending and descending
vessels, capillary beds, interstitial cells and
spaces, with a homogenous intermediate
interstitium by assigning effective value to
diffusion  coefficients and Darcy
permeability? Besides, is it reliable enough
to consider uniform concentration
distributions over the OMI cross section, 1-
D simulations, or mathematical modeling
of renal should be done by 3-D simulation?

Primarily, in order to put more focus on
investigating the effect of OMI diffusion
coefficients on UCM, we have assumed OMI
not to be porous, i.e. k=1. Then, by
assigning different values to interstitial
solute permeability, we have been able to
study its effect on radial species
concentration gradient. One must note that
diffusivities in intratubular regions have
remained constant and equal to self-
diffusion coefficients in dilute aqueous
solution, 1.5x10° cm?/s and 1.38x10°
cm?/s for Na* and urea, respectively [41].

Figure 9 demonstrates contours of urea
and Na* concentration distributions at an
arbitrary cross section, 3 mm from cortico-
medullary boundary. As it has been
expected, high values of solute
permeability in the intermediate space
practically results in uniform planar Na*

.17 "< .and urea' concBntration distribution. On

the other hand, as shown in Figures 9-A, B
and C, by considerably reducing solute
permeabilities, radial concentration
contours emerge so we would be able to
detect discernable planar osmotic gradient.
It can be seen that in these cross sections,
high and low concentration regions are
situated next to each other. For instance,
Na* concentration was distributed from
150 to 270 mM and urea concentration
was distributed from 2.5 to 8 mM (Figure
9-C). In sum, these results show that
species transport from tubules to the non-
porous OMI is directly influenced by
diffusion coefficient.

Figures 10-A and B display Na* and urea
concentration profiles along nephron’s
length. It is shown that lower OMI solute
diffusivities decrease the concentrating
urine capability of a single nephron in this
over simplified model structure, because
urine at CD outlet would have lower
osmolality. Furthermore, the pressure and
velocity profiles along intratubular flux
direction demonstrate that they can be
directly affected by the changes in solute
diffusivities (Figure 10-C and D). For
instance, lower diffusion coefficients create
the necessity for higher upstream static
pressure. Moreover, higher maximum flow
velocity at the end of DHL for lower OMI
diffusivities means less water s
reabsorbed from descending tubule. In
other word, excessive radial confinement
of tubules which can be imposed by
lowering diffusion coefficient values can
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practically block solutes and fluid
interactions  between  tubules and
consequently will result in reducing

concentrating capability. On the other
hand, cases with very high values of this
parameter are unable to simulate the
preferential interaction between tubules
and the results are basically equivalent to
1-D simulations,  uniform  planar
osmolality. In a word, the most important
implication of this section is that this
model parameter is perfectly capable of
simulating tubular preferential interaction
in which low diffusivities lead to more

confinement between tubules and its
higher values means no cross-sectional
osmotic gradient. Moreover, it can be
concluded that there exists an optimum
value for this parameter to be consistency
between simulation and experimental
results. Unfortunately, the results from this
over simplified structure are not able to
clearly demonstrate the crucial
significance of this parameter and its
influence on system'’s optimal
performance, but we have plan to find this
optimum value by our complete 3-D
simulation near future.

o
T

T
¥

T

Figure {&a* and urea concentration contours respectively in left and right column at cross section
3 mm from cortico-medullary boundary for different diffusivity

:D=5x%x10"(m?/s) ,B:D =5x%x 10" (m?/s),C: D =5 x 10712(m?/s)

Na cancaniration (1)
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Prossurg (Pa)
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< %0 —s"rfiffect of diffusion coefficient of the outer medullary interstitium on A: Na* concentration,
B: urea concentration, C: pressure and D: maximum flow velocity distribution profiles along nephron
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Outer medulla consists of various
compartments, e.g.tubules, ascending and
descending vasa recta, interstitial cell,
interstitial spaces and capillaries, making it
very difficult to mathematically simulate
interactions between these constituents. In
order to simplify this complexity, outer
medullary interstitium is considered to act
as a porous intermediate vascular space.
Therefore, by assigning proper values to
Darcy permeability in x and y directions,
we would be able to control the amount of
radial fluid exchange and accordingly
convective species transport between
tubules. It should be noted that along z
axis, due to central core assumption, Darcy
permeability is assumed to be 1. It should
be noted that in more complicated model
structure with separate vasa recta, an
appropriate Darcy permeability in cortico-
meduallry direction should also be
introduced. In this section, very low solute
diffusivities have been used in order to
amplify the influence of Darcy permeability
on UCM. In addition, the influence of
porosity has been just magnified to
investigate its nature and give a rough
estimate of its effect on UCM for more
complex model structure.

In Figure 11-B, C and D, contours of
axial velocity are demonstrated for
different radial Darcy permeabilities
varying from 10 to 101° m2
Furthermore, for comparison purposes,
the contours of the non-porous OMI are
also shown in Figure 11-A. It is shown that
radial porosity resistance, through creating
high pressure gradient in the vicinity of
each tubule, do not allow the reabsorbed
fluid distributes radially and its upward
flux toward cortex is confined to tubule’s
vicinity. Moreover, in order to provide a
better insight into fluid exchange between
tubules, radial velocity contours over the
medulla cross section are also depicted in
Figure 12-B, C and D, for different values of
radial Darcy permeability. It could be

— S perceived from Figures 11, 12 that due to

extremely low interstitial fluid fluxes, axial
and radial velocity contours practically do
not change much for Darcy permeabilities
below 10-1> m2. Subsequently, the effect of
porosity on planar species concentration
gradients has also been studied for
extremely porous, k = 10-1° m?, as well as
non-porous medullary interstitium (Figure
13-A,B).

Darcy  permeability almost has
seemingly had no influence on
concentration contours but in what
follows, it has been shown that it has
affected concentration distributions along
nephron’s length (Figure 14). The
differences between profiles of various
OMI porosities arise from limiting radial
convective fluid flow. Therefore, in
descending tubule, reabsorption increases
by lowering Darcy permeability which
ultimately leads to slight rises in
intratubular ~ species  concentrations.
Moreover, it is apparent that because there
is no water exchange across AHL
membrane, its concentration profiles are
not affected by porosity change. Since
distal tubule interact with osmotically in
equilibrium CI at a considerable length, Na*
and urea concentrations converge to fixed
values. Furthermore, in the collecting duct,
the same process as DHL will also affect
concentration profiles.

Another issue is the importance of
hydraulic pressure differences versus
osmotic pressure differences. It is
generally considered that the latter are
predominant in tubules, since the pressure
exerted by a 1 mM concentration gradient
is 19.4 mmHg and the results from this
section also clearly supports this
assumption. As shown in Figure 15, the
most significant contribution of lowering
Darcy permeability in OMI is drastically
increasing local pressure in tubule’s
vicinity of course for very low diffusivities.
Here, the diffusion coefficients are
approximately 300 times lower than those
in the tubules which may seem reasonable
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because too much confinement have been
imposed in order that porosity influence

can be detectable.
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v &onclusions

In order to study the effects of outer
medulla's structural properties on the
UCM, a simple 3-D model was described
in this paper. Darcy permeability and
solute’s diffusivity of the intermediate
media are two important properties
which were chosen to investigate their
influence on the UCM. Besides, we also
studied the effects of slip boundary
condition on tubules' membrane
because of its major role in mass
transfer. The most distinguishable
advantage of our 3-D approach is that
this behavior could be modeled by
having control over solute’s diffusion
and Darcy permeability coefficients of
OMI. This 3-D modeling was just a
framework to reach a converged
numerical solution for the momentum
and species transport equations along
with their coupled membrane fluxes
using our native code. Due to this

reason, the model structure and their
membrane specification were assumed
to be as simple as possible. Therefore,
the results from this simple 3-D
simulation were not that accurate to be
compared with experimental data. But,
our 3-D approach was evaluated against
its equivalent one-dimensional model
in the first part of our data analysis.

Although there were some
simplifying assumptions in our model,
we could simulate preferential
interactions and more importantly the
radial concentration gradients by
assigning specific values to physical
properties like Darcy and solute
permeability. On the whole, we believe
that this approach will play an
important role in obtaining a deeper
understanding about the effect of
tubular and vascular 3-D architecture
and their interactions in UCM.
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Nomenclature

i Tubule or medulla superscript
k Solute subscript

. m
i Transtubular water flux, —

; !
4 Transtubular solute flux, ::zs
Pt Pressure, P2
. 3
E} Water flow rate, mT
; !
Fy Solute flow rate, —o
i i ?nol
Cx Solute concentration, —
hi Hydraulic permeability, %
hi Solute permeability, %
oL Reflection coefficient
Posmk Osmolality coefficient

Abbreviations

AHL= Ascending Henle's loop
AVRs= Ascending vasa recta

CC= Central core

CD= Collecting duct

CI= Cortical interstitium

DHL= Descending Henle's loop
DT= Distal tubule

DVRs= Descending vasa recta

OM-= Outer medulla

OMI= Outer medullary interstitium
UCM-= Urine concentration mechanism
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