Document Type: Original Article

Authors

1 Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran

2 Department of Microbiology, Kerman Science and Research Branch, Islamic Azad University, Kerman, Iran

3 Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, IR Iran

4 Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran

Abstract

Petroleum hydrocarbons are important energy resources used by industry and in our daily life, whose production contributes highly to environmental pollution. To control such risk, bioremediation constitutes an environmentally friendly alternative technology that has been established and applied. It constitutes the primary mechanism for the elimination of hydrocarbons from contaminated sites by natural existing populations of microorganisms. Petroleum (or crude oil) is a complex mixture of hydrocarbons. Annually, millions of tons of crude petroleum oil enter the marine environment from either natural or anthropogenic sources. Hydrocarbon-degrading bacteria (HDB) are able to assimilate and metabolize hydrocarbons present in petroleum. Crude oil pollution constitutes a temporary condition of carbon excess coupled to a limited availability of nitrogen that prompts marine oil-degrading bacteria to accumulate storage compounds. This review focuses on the role and distribution in the environment of degradation bacteria and their (potential) applications in bioremediation and biocatalysis. Bacteria play an important role in the microbial degradation of oil, chlorinated hydrocarbons, fuel additives, and many other compounds. Environmental studies demonstrate the abundance of alkane degraders and have lead to the identification of many new species, including some that are (near) obligate alkanotrophs. Bioremediation is being increasingly seen as an affective, environmentally friendly treatment for contaminated shorelines from marine oil spills. Oil bioremediation is limited by the availability of nitrogen and phosphorous which are needed by the bacteria and are not present in sufficient amounts for the biodegradation of the spilled hydrocarbons.

Keywords

Abraham, W.R., Meyer, H.,Yakimov, M. (1998). Novel glycine containing glucolipids from the alkane using bacterium Alcanivorax borkumensis. Biochim Biophys Acta, 93(13): 57-62.
Atlas, R.M. (1981). Microbial degradation of petroleum hydrocarbons: an environmental perspective Microbiol Rev,(45): 180-209.
Atlas, R.M. (1995). Petroleum biodegradation and oil spill bioremediation. Mar Pollut Bull, 31: 178-182.
Baptist, J.N., Gholson, R.K.,Coon, M.J. (1963). Hydrocarbon oxidation by a bacterial enzyme system: I. Products of octane oxidation. Biochim Biophys Acta, 69: 40-47.
Batista, S.B., Mounteer, A., Amorim, F.R.,Totola, M.R. (2006). Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresour. Technol,97: 868-875.
Beilen, J.B.,Funhoff, E.G. (2007). Alkane hydroxylases involved in microbial alkane degradation Appl Microbiol Biotechnol, 74: 13-21.
Beller, H.R.,Spormann, A.M. (1999). Substrate range of benzylsuccinate synthase from Azoarcus sp. strain T. FEMS Microbiol, 178: 147-153.
Bernhardt, R. (2006). Cytochromes P450 as versatile biocatalysts. J Biotechnol, 124: 128-145.
Cappello, S., Caruso, G., Zampino, D., Monticelli, L.S., Maimone, G., Denaro, R., Tripodo, B., Troussellier, M., Yakimov, M.M.,Giuliano, L. (2007a). Microbial community dynamics during assays of harbor oil spill bioremediation: amicroscale simulation study. J. Appl. Microbiol, 102(1): 184-194.
Cappello, S., Denaro, R., Genovese, M., Giuliano, L.,Yakimov, M.M. (2006). Predominant growth of Alcanivorax during experiments on oil spill bioremediation in mesocosms. Microbiol. Res, 162: 185-190.
Cappello, S., Denaro, R., Genovese, M., Giuliano, L.,Yakimov, M.M. (2007b). Predominant growth of Alcanivorax during experiments on oil spill bioremediation in mesocosms. Microbiol. Res, 162(2): 185-190.
Chakrabarty, A.M., Chou, G.,Gunsalus, J.C. (1973). Genetic regulation of the octane dissimilation plasmid in Pseudomonas. PNAS, 70: 1137-1140.
Coleman, N.V., Bui, N.B.,Holmes, A.J. (2006). Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ Microbiol, 8: 1228-1239.
Coon, M.J. (2005). Omega oxygenases: nonheme-iron enzymes and P450 cytochromes. Biochem Biophys Res Commun, 338: 378-385.
Doughty, D., Sayavedra-Soto, L.A., Arp, D.J.,Bottomley, P.J. (2006). Product repression of alkane monooxygenase expression in Pseudomonas butanovora J Bacteriol, 188: 2586-2592.
Eggink, G., van Lelyveld, P.H., Arnberg, A., Arfman, N., Witteveen, C.,Witholt, B. (1987b). Structure of the Pseudomonas putida alkBAC operon. J Biol Chem, 262: 6400-6406.
Ehrenreich, P., Behrends, A., Harder, J.,Widdel, F. (2000). Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Archives of Microbiology 173: 58-64.
Elliott, S.J., Zhu, M., Tso, L., Nguyen, H.H.T., Yip, J.H.K.,Chan, S.I. (1997). Regio and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). . J Am Chem Soc, 119:9949-9955.
Feng, L., Wang, W., Cheng, J., Ren, Y., Zhao, G., Gao, C., Tang, Y., Liu, X., Han, W., Peng, X., Liu, R.,Wang, L. (2007). Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci USA, 104:5602-5607.
Fries, M.R., Zhou, J., Chee-Sanford, J.,Tiedje, J.M. (1994). Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Applied and Environmental Microbiology, 60:2802-2810.
Gertler, C., Gerdts, G., Timmis, K.N.,Golyshin, P.N. (2009). Microbial consortia in mesocosm bioremediation trial using oil sorbents, slow-release fertilizer and bioaugmentation. FEMS Microbiol Ecol, 69: 288-300.
Gill, C.O.,Ratledge, C. (1972). Toxicity of n-alkanes, n-alk-1-enes, n-alkan-1-ols and n-alkyl-1-bromides towards yeasts. Journal of General Microbiology, 72: 165-172.
Halsey, K.H., Sayavedra-Soto, L.A., Bottomley, P.J.,Arp, D.J. (2006). Sitedirected amino acid substitutions in the hydroxylase a subunitof butane monooxygenase from Pseudomonas butanovora: implications for substrates knocking at the gate. J Bacteriol, 188: 4962-4969.
Hamamura, N., Storfa, R.T., Semprini, L.,Arp, D.J. (1999). Diversity in butane monooxygenases among butane-grown bacteria. Appl Environ Microbiol, 65: 4586-4593.
Hara, A., Baik, S.H., Syutsubo, K., Misawa, N., Smits, T.H.M., van Beilen, J.B.,Harayama, S. (2004). Cloning and functional analysis of alkBgenes in Alcanivorax borkumensis SK2. Environ Microbiol, 6:191-197.
Harayama, S., Kishira, H., Kasai, Y.,Shutsubo, K. (1999). Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol, 1: 63-70.
Hassanshahian, M., Emtiazi, G.,Cappello, S. (2012a). Isolation and characterization of crude-oildegrading bacteria from the Persian Gulf and the Caspian Sea. Marine Pollution Bulletin, 64(1): 7-12.
Head, I.M., Jones, D.M.,Röling, W.F.M. (2006). Marine microorganisms make a meal of oil. Nat Rev Microbiol, 4: 173-182.
Kasai, Y., Kishira, H., Sasaki, T., Syutsubo, K., Watanabe, K.,Harayama, S. (2002). Predominant growth of Alcanivorax strains in oilcontaminated and nutrient-supplemented sea water. Environ Microbiol Rev,4: 141-147.
Kitmitto, A., Myronova, N., Basu, P.,Dalton, H. (2005). Characterization and structural analysis of an active particulate methane monooxygenase trimer from Methylococcus capsulatus (Bath). Biochemistry, 44: 10954-10965.
Kohno, T., Sugimoto, Y., Sei, K.,Mori, K. (2002). Design of PCR primers and gene probes for general detection alkane-degrading bacteria. Microbiol. Environ, 17(3): 114-212.
Kok, M., Oldenhuis, R., Van der Linden, M.P.G., Raatjes, P., Kingma, J., van Lelyveld, P.H.,Witholt, B. (1989). Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. J Biol Chem, 264:5435-5441.
Kotani, T., Yamamoto, T., Yurimoto, H., Sakai, Y.,Kato, N. (2003). Propane monooxygenase and NAD(+)-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY- 5. J Bacteriol, 185: 7120-7128.
Leahy, J.G., Batchelor, P.J.,Morcomb, S.M. (2003). Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev,(27): 449-479.
Lieberman, R.L.,Rosenzweig, A.C. (2005). Crystal structure of a membrane-bound metalloenzyme that catalyzes the biological oxidation of methane. Nature, 434: 177-182.
Maeng, J.H., Sakai, Y., Tani, Y.,Kato, N. (1996). Isolation and characterization of a novel oxygenase that catalyzes the first step of nalkane oxidation in Acinetobacter sp strain M-1. J Bacteriol, 178: 3695-3700.
Manilla-Pérez, E., Lange, A.B., Hetzler, S.,Steinbüchel, A. (2010). Occurrence, production, and export of lipophilic compounds by hydrocarbonoclastic marine bacteria and their potential use to produce bulk chemicals from hydrocarbons. Appl Microbiol Biotechnol, 86: 1693-1706.
Maruyama, A., Ishiwata, H., Kitamura, K., Sunamura, M., Fujita, T., Matsuo, M.,Higashihara, T. (2003). Dynamics of microbial populations and strong selection for Cycloclasticus pugetii following the Nakhodka oil spill. Microb Ecol, 46: 442-453.
Mbadinga, S.M., Wang, L.Y., Zhou, L., Liu, J.F., Gu, J.D.,Mu, B.Z. (2011). Microbial communities involved in anaerobic degradation of alkanes. International Biodeterioration & Biodegradation, 65(1): 1-13.
Merkx, M., Kopp, D.A., Sazinsky, M.H., Blazyk, J.L., Muller, J.,Lippard, S.J. (2001). Dioxygen activation and methane hydroxylation by soluble methane monooxygenase: a tale of two irons and three proteins. Angew Chem Int Ed, 40: 2782-2807.
Murrell, J.C., Gilbert, B.,McDonald, I.R. (2000). Molecular biology and regulation of methane monooxygenase. Arch Microbiol, 173: 325-332.
Myronova, N., Kitmitto, A., Collins, R.F., Miyaji, A.,Dalton, H. (2006). Three-dimensional structure determination of a protein supercomplex that oxidizes methane to formaldehyde in Methylococcus capsulatus (Bath). Biochemistry, 45: 11905-11914.
Rabus, R.,Widdel, F. (1996). Utilization of alkylbenzenes during anaerobic growth of pure cultures of denitrifying bacteria on crude oil. Applied and Environmental Microbiology, 62: 1238-1241.
Rabus, R., Wilkes, H., Behrends, A.,Widdel, F. (1999). Anaerobic utilization of alkylbenzenes and nalkanes from crude oil in an enrichment culture of denitrifying bacteria affiliating with the b-subclass of Proteobacteria. Environmental Microbiology, 1: 145-157.
Rahman, K.S.M., Thahira-Rahman, J., Lakshmanaperumalsamy, P.,Banat, I.M. (2004). Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour. Technol, 85: 257-261.
Röling, W.F., Milner, M.G., Jones, D.M., Fratepietro, F., Swanell, R.J., Daniel, F.,Head, I.M. (2004). Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol, 70: 2603- 2613.
Röling, W.F., Milner, M.G., Jones, D.M., K, L., Daniel, F., Swanell, R.J.,Head, I.M. (2002). Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil-spill bioremediation. Appl Environ Microbiol, 68: 5537-5548.
Rosenberg, E., Legmann, R., Kushmaro, A., Taube, R., Adler, E.,Ron, E. (1992). Petroleum bioremediation: a multiphase problem. Biodegradation, 3: 337-350.
Sakai, Y., Maeng, J.H., Tani, Y.,Kato, N. (1994). Use of long-chain n-alkanes (C13-C44) by an isolate, Acinetobacter sp. M-1. Biosci Biotechnol Biochem, 58: 2128-2130.
Shennan, J.L. (2006). Utilisation of C-2-C-4 gaseous hydrocarbons and isoprene by microorganisms. J Chem Technol Biotechnol, 81: 237-256.
Sikkema, J., De Bont, J.,Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews, 59: 201-222.
Sikkema, J., De Bont, J.A.,Poolman, B. (1994). Interactions of cyclic hydrocarbons with biological membranes. . Journal of Biological Chemistry 269: 8022-8028.
Smits, T.H.M., Balada, S.B., Witholt, B.,van Beilen, J.B. (2002). Functional analysis of alkane hydroxylases from Gram-negative and Grampositive bacteria. J Bacteriol, 184: 1733-1742.
Smits, T.H.M., Röthlisberger, M., Witholt, B.,van Beilen, J.B. (1999). Molecular screening for alkane hydroxylase genes in Gramnegative and Gram-positive strains. Environ Microbiol, 1: 307-318.
Song, B., Haggblom, M.M., Zhou, J., Tiedje, J.M.,Palleroni, N.J. (1999). Taxonomic characterization of denitrifying bacteria that degrade aromatic compounds and description of Azoarcus toluvorans sp. nov.
and Azoarcus toluclasticus sp. nov. In.J Sys. Bacteriol, 49: 1129-1140. Syutsubo, K., Kishira, H.,Harayama, S. (2001). Development of specific oligonucleotide probes for the identification and in situ detection of hydrocarbon-degrading Alcanivorax strains. Environ Microbiol, 3:371-379.
Tani, A., Ishige, T., Sakai, Y.,Kato, N. (2001). Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1. J Bacteriol, 183: 1819-1823.
Van Beilen, J., Li, Z., Duetz, W.A., Smits, T.H.M.,Witholt, B. (2003). Diversity of alkane hydroxylase systems in the environment. . Oil Gas Sci. Technol, 58: 427-440.
van Beilen, J.B.,Funhoff, E.G. (2007). Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol, 74: 13-21.
van Beilen, J.B., Funhoff, E.G., van Loon, A., Just, A., Kaysser, L., Bouza, M., Holtackers, R., Röthlisberger, M., Li, Z.,Witholt, B. (2006). Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl
Environ Microbiol, 72: 59-65.
van Beilen, J.B., Marín, M.M., Smits, T.H.M., Röthlisberger, M., Franchini, A.G., Witholt, B.,Rojo, F. (2004). Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ Microbiol, 6: 264-273.
van Beilen, J.B., Neuenschwander, M., Smits, T.H.M., Roth, C., Balada, S.B.,Witholt, B. (2002a). Rubredoxins involved in alkane oxidation. J Bacteriol, 184: 1722-1732.
van Beilen, J.B., Panke, S., Lucchini, S., Franchini, A.G., Röthlisberger, M.,Witholt, B. (2001). Analysis of the Pseudomonas putida alkanedegradation gene cluster and flanking insertion sequences: evolution and regulation of the alk genes. . Microbiology, 147: 1621-1630.
van Beilen, J.B., Smits, T.H.M., Roos, F.F., Brunner, T., Balada, S.B., Röthlisberger, M.,Witholt, B. (2005). Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases. J Bacteriol, 187: 85-91.
van Beilen, J.B., Smits, T.H.M., Whyte, L.G., Schorcht, S., Röthlisberger, M., Plaggemeier, T., Engesser, K.H.,Witholt, B. (2002b). Alkane hydroxylase homologues in Gram-positive strains. Environ Microbiol4: 676-682.
van Beilen, J.B., Wubbolts, M.G.,Witholt, B. (1994). Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation, 5: 161-174.
Van Hamme, J.D., Singh, A.,Ward, O.P. (2003). Recent advances in petroleum microbiology. Microb. Mol. Biol. Rev, 67: 503-554.
Wang, L., Tang, Y., Wang, S., Liu, R.L., Liu, M.Z., Zhang, Y., Liang, F.L.,Feng, L. (2006). Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles, 10: 347-356.
Wentzel, A., Ellingsen, T.E., Kotlar, H.K., Zotchev, S.B.,Holst, M. (2007). Bacterial metabolism of longchain n-alkanes. Appl Microbiol Biotechnol, 76: 1209-1221.
Whyte, L.G., Smits, T.H.M., Labbe, D., Witholt, B., Greer, C.W.,van Beilen, J.B. (2002). Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B- 16531. Appl Environ Microbiol, 68: 5933-5942.
Wilkes, H., Kühner, S., Bolm, C., Fischer, T., Classen, A., Widdel, F.,Rabus, R. (2003). Formation of nalkane- and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil. Org.Geo 34: 1313-1323.
Yakimov, M.M., Timmis, K.N.,Golyshin, P.N. (2007). Obligate oil-degrading marine bacteria. Curr. Opin. Biotechnol, 18: 257-266.
Zhang, J., Zheng, H., Groce, S.L.,Lipscomb, J.D. (2006). Basis for specificity in methane monooxygenase and related non-heme iron-containing biological oxidation catalysts. J Mol Catal A Chem, 251: 54-65.
ZoBell, C.E. (1946). Action of microorganisms on hydrocarbons. Bacteriol Rev, 10: 1-49.
Zwolinski, M.D., Harris, R.F.,Hickey, W.J. (2000). Microbial consortia involved in the anaerobic degradation of hydrocarbons. Biodegradation, 11: 141-158.