Document Type: Original Article

Authors

1 Department of Chemistry, Saveh Branch, Islamic azad University, Saveh, Iran

2 Department of Chemistry, Bourojerd Branch, Islamic Azad University, Bourojerd, Iran

Abstract

Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the self assembly pathway. Herein, we report the use of an azobenzene β-hairpin mimetic to study byUsing Density Functional Theory the role turn nucleation plays on Aβ self assembly.[3-(3-Aminomethyl) phenylazo] phenyl acetic acid (AMPP)was incorporated into the putative turn region of Aβ42 to elicit temporal control over Aβ42 turn nucleation; it was hypothesized that self-assembly would be favored in the cis-AMPP conformation if β-hairpin formation occurs during Aβ self-assembly and that the trans-AMPP conformer would display attenuated fibrillization propensity. It was unexpectedly observed that the trans-AMPP Aβ42Additionally, cis-trans photo isomerization resulted in rapid formation of native-like amyloid fibrils and trans−cis conversion in the fibril state reduced the population of native-like fibrils. Thus, temporal photo control over Aβ turn conformation providessignificant insight into Aβ self-assembly

Keywords

Aemissegger, A., and Hilvert, D. (2007) Synthesis andapplication of an azobenzene amino acid as a lightswitchable turnelement in polypeptides. Nat. Protoc. 2, 161-167.
Ahmed, M., Davis, J., Aucoin, D., Sato, T., Ahuja, S., Aimoto, S,.Elliott, J. I., Sostrand, W. E. V., and Smith, S. O. (2010) Structuralconversion of neurotoxic amyloid-β(1-42) oligomers to fibrils. Nat.
Alzheimer’s Aβ-(1-42) Peptide in Aqueous Media is Reversible: AStep by Step Conformational Analysis Suggests the Location of βConformation Seeding. ChemBioChem 7, 257-267.
Beharry, A. A., and Woolley, G. A. (2011) Azobenzene photoswitches for biomolecules. Chem. Soc. Rev 40, 4422-4437.
Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L,.Zurdo, J., Taddei, N., Ramponi, G., Dobson, C. M., and Stefani, M.(2002)Inherent toxicity of aggregates implies a common mechanismfor protein misfolding diseases. Nature 416, 507-511.
Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D’Ursi,A. M., Temussi, P. A., and Picone, D. (2002) Solution structure of theAlzheimer amyloid β-peptide (1-42) in an apolar microenvironment.Eur. J. Biochem. 269, 5642-5648.
Dong, S.-L., Loweneck, M., Schrader, T. E., Schreier, W. J,.Moroder, L., and Renner, C. (2006) A Photocontrolled β-HairpinPeptide. Chem.Eur. J. 12, 1114-1120.
Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C,.Mellon, A., Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D,.Teplow, D. B., and Selkoe, D. J. (1992) Amyloid β-peptide is
producedby cultured cells during normal metabolism. Nature 359, 322-325.
Hardy, J., and Selkoe, D. J. (2002) The Amyloid Hypothesis ofAlzheimer’s Disease: Progress and Problems on the Road toTherapeutics. Science 297, 353-356.
Hoyer, W., Grönwall, C., Jonsson, A., Ståhl, S., and Härd, T. (2008) Stabilization of a β-hairpin in monomeric Alzheimer’s amyloid-β peptide inhibits amyloid formation. Proc. Natl. Acad. Sci. U.S.A. 105, 5099-5104.
Krautler, V., Aemissegger, A., Hünenberger, P. H., Hilvert, D,.Hansson, T., and Gunsteren, W. F. v. (2005) Use of MolecularDynamics in the Design and Structure Determination of a Photoinducibleβ- Hairpin. J. Am. Chem. Soc. 127, 4935-4942.
Lazo, N. D., Grant, M. A., Condron, M. C., Rigby, A. C., andTeplow, D. B. (2005) On the nucleation of amyloid β-proteinmonomer folding. Protein Sci. 14, 1581-1596.
Miller, Y., Ma, B., and Nussinov, R. (2009) Polymorphism ofAlzheimer’s Aβ17-42 (p3) Oligomers: The Importance of the TurnLocation and Its Conformation. Biophys. J. 97, 1168-1177.
Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N,.Leapman, R. D., Delaglio, F., and Tycko, R. (2002) A structural modelfor Alzheimer’s β-amyloid fibrils based on experimental constraintsfrom solid state NMR. Proc. Natl. Acad. Sci. U.S.A. 99, 16742-16747.
Sandberg, A., Luheshi, L. M., Söllvander, S., Barros, T. P. d,Macao, B., Knowles, T. P. J, Biverstål, H., Lendel, C., Ekholm-Petterson, F., Dubnovitsky, A., Lannfelt, L., Dobson, C. M., and Härd,T. (2010)
Stabilization of neurotoxic Alzheimer amyloid-β oligomersby protein engineering. Proc. Natl. Acad. Sci. U.S.A. 107, 15595-15600.
Sciaretta, K. L., Gordon, D. J., Petkova, A. T., Tycko, R., and Meredith, S. C. (2005) Aβ40-Lactam (D23/K28) Models a Conformation Highly Favorable for Nucleation of Amyloid. Biochemistry 44, 6003-6014.
Struct.Mol. Biol. 17, 561-567.(13)Balbach, J. J., Petkova, A. T., Oyler, N. A., Antzutkin, O. N,.Gordon, D. J., Meredith, S. C., and Tycko, R. (2002) Supramolecular Structure in Full-Length Alzheimer’s β-
Amyloid Fibrils: Evidence for aParallel β-Sheet Organization from Solid-State Nuclear MagneticResonance. Biophys. J. 83, 1205-1216.
Tomaselli, S., Esposito, V., Vangone, P., Nuland, N. A. J. v,.Bonvin, A. M. J. J., Guerrini, R., Tancredi, T., Temussi, P. A., andPicone, D. (2006) The α-to-β Conformational Transition ofACS Chemical Neuroscience Research Article219dx.doi.org/10.1021/cn2001188 | ACS Chem. Neurosci. 2012, 3,
211-220.
Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R,.Wolfe, M. S., Rowan, M. J., and Selkoe, D. J. (2002) Naturally secretedoligomers of amyloid-β protein potently inhibit hippocampal longtermpotentiation in vivo. Nature 416, 535-539.