Ashkan Nabavi Pelesaraei; Sajjad Shaker Koohi; Mohammad Bagher Dehpour
Volume 1, Issue 11 , November 2013, , Pages 1478-1489
Abstract
This paper studies the modeling and optimization of energy use and greenhouse gas emissions of eggplant production using artificial neural network and multi-objective genetic algorithm ...
Read More
This paper studies the modeling and optimization of energy use and greenhouse gas emissions of eggplant production using artificial neural network and multi-objective genetic algorithm in Guilan province of Iran. Results showed that the highest share of energy consumption belongs to diesel fuel (49.24%); followed by nitrogen (33.30%). The results indicated that a total energy input of 13910.67 MJ ha-1 was consumed for eggplant production. In ANN, the Levenberg-Marquardt Algorithm was examined to finding best topology for modeling and optimization of energy inputs an GHG emissions for eggplant production. The results of ANN indicated the best topology with 12-9-9-2 structure had the highest R2, lowest RMSE and MAPE. Also, the multi-objective optimization was done by MOGA. In this research, 42 optimal was introduced by MOGA based minimum total GHG emissions and maximum yield of eggplant production, in the studied area. Also, the results revealed that the best generation with lowest energy use was consumed about 4597 MJ per hectare. The GHG emissions of best generation was calculated as about 127 kg CO2eq. ha-1. The potential of GHG reduction by MOGA was computed as 388.48 kg CO2eq. ha-1. Also, the highest reduction of GHG emissions belongs to diesel fuel with 65.05%