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ABSTRACT 

GABAergic drugs can change analgesic effect of morphine. Wide dynamic range (WDR) 
neurons play an important role in pain transmission and may change behaviors in 
morphine tolerance. In this study, WDR neuron behaviors in morphine tolerant rats and 
rats treated with GABA agonists, were recorded to elucidate the effect of morphine and 
GABA agonists on WDR behavioral changes. Rats were divided to 4 groups: 1. Control, 2. 
Morphine tolerance (MT), 3. MT+ muscimol, 4- MT+ baclofen. To induce morphine 
tolerance in rats, they received morphine sulfate 10 mg/kg intraperitoneally for 8 days. In 
the treatment group, GABA agonists were injected on days 1, 3, 5 and 8 before injection of 
morphine. To confirm morphine tolerance induced, formalin test was used. Extracellular 
single unit recording was used to record spinal WDR neurons. Results showed that chronic 
administration of morphine failed to attenuate formalin pain but GABA agonists improved 
analgesic effect of morphine. 
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Introduction  

Morphine is an effective drug in improving acute and chronic pain syndrome. Especially in 
chronic pain, it can attenuate pain, improve patient's life and increase life expectancy in 
people with chronic pain. (Lilius et al., 2017). Although morphine is the most efficient drug 
in chronic pain but  chronic administration of morphine leads to the development of 
tolerance to the anti-nociception effect of morphine. Tolerance limits the use of opioids and 
therefore co-administration of other drugs with chronic administration of morphine is 
considered (Mansouri et al., 2015). After several decades of study on morphine tolerance, it 
is still not understood very well.  One of the most possible causes of tolerance is alternation 
on neurotransmitter's level (Mehrabadi and Karimiyan, 2018). There are several reports 
about alternation of  GABA  neurotransmitter on opioid tolerance and dependence (Dobashi 
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et al., 2010; Hull et al., 2013). Recently, behavioral and molecular studies showed that GABA 
agonists could be used in the treatment of opioid tolerance and improve the alternation of 
GABA level in morphine tolerance and dependence (Vorma and Katila, 2011). Systemic 
administration of GABA agonists attenuated withdrawal syndrome induced by naloxone 
(Belozertseva and Andreev, 2000). GABA has an important role in pain modulatory 
pathway that is activated by morphine and affects spinal cord (Lueptow et al., 2018). The 
main center of action of morphine is the dorsal horn of the spinal cord (Haugan et al., 2008). 
There is no investigation that clarifies the effect of morphine tolerance and effect of GABA 
agonists on electophysiological changes in spinal cord level. In the present study, sub-
effective dose of GABA agonists that did not induce analgesia was determined to investigate 
the effect of GABA on morphine analgesic in chronic administration. Then, the effect of 
morphine tolerance on WDR neurons behavior was investigated as one of the most 
important neurons which has a role in pain transmission on spinal cord. Moreover, the 
effect of different GABA agonists on electrophysiological changes of WDR neurons was 
investigated to understand the possible effect of morphine tolerance and co-administration 
of GABA agonists with morphine in chronic use at spinal cord level and WDR neuron's 
behaviors. 

Materials and methods 

Animals 

64 male wistar rats weighing 200-250 gr were used in this study (n=8 per group). They 
were housed four per cage under a 12 h light/dark cycle in a room with controlled 
temperature (22±1 °C). Food and water were available ad libitum.  

Protocol  

First, to find sub effective dose of GABA agonists, three different doses of drug were used as 
a single dose injection (0.5, 0.75 and 1 mg/kg; i.p.) in normal rats before the formalin test. 
Baclofen and muscimol (0.5 mg/kg, i.p.) had no analgesic effect on the normal rats in the 
formalin test, thus, these doses were selected for the current studies to evaluate the GABA 
agonist effect on morphine analgesia. 
Animals were divided into the 4 groups: (i) a control group that received saline; (ii) a group 
induced morphine tolerance: received morphine once every day for 8 days (morphine 
tolerance group); (iii) a group induced morphine tolerance and injected muscimol (0.5 mg/ 
kg; i.p.) and (iiii) a group induced morphine tolerance and injected baclofen as GABAB 
agonist (0.5 mg/kg; i.p.). There were eight rats in each group. The behavioral test (Formalin 
test) was performed on the 8th day in the four groups. Also, in the electrophysiological part, 
there were 4 groups that had a same protocol like behavioral test, but on the 8th day instead 
of formalin test, the animals anesthetized and spinal cord of rats were exposed and the 
behaviors of WDR neurons were recorded. 

Drug administration 

 To induce tolerance to analgesic effects, morphine hydrochloride (Temad, Iran) was 
chronically administered at a daily dose of 10 mg/kg, i.p., from days 1 to 8 (Hill et al., 2016). 
To determine the effect of GABA agonists on the development of morphine tolerance, 
muscimol (Sigma- Aldrich, USA) was used as GABAA agonist and baclofen (Zahravi CO, Iran) 
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was used as GABAB agonist, which were administrated i.p., at a dose of 0.5 mg/kg at days 1, 
3, 5 and 8, thirty minutes before injection of morphine. Then, nociceptive (Formalin test) 
and electrophysiological tests were performed on day 8th. All the drugs were dissolved in 
physiological saline. 

Anti-nociceptive test  

The rats were placed individually in an open Plexiglas chamber (bowl-like cage 40×35 cm) 
with a mirror angled at 45° and positioned behind to allow an un-obstructed view of the 
paws by the observer. The animals were habituated to the observation chamber for 30 min 
prior to the experimental sessions. Formalin (50 μl) was injected s.c. into the plantar 
surface of the rat hind paw (left or right, counterbalanced across each treatment group) 
using a 27-gauge needle. After injection, rats were immediately returned to the observation 
chamber and formalin-induced behaviors were recorded by a trained observer 
continuously for 60 min. Formalin injection produced characteristic behaviors consisting of 
flinching and licking/biting of the injected paw. These behaviors were quantified based on 
pain severity. The nociceptive responses were scored every 15 s as follows: 0 (the injected 
paw is placed on the floor), 1 (the injected paw rests lightly on the floor and little or no 
weight is placed on it), 2 (the injected paw is elevated and not in contact with any surface), 
and 3 (the injected paw is licked, bitten, or shaken) (Roca-Vinardell et al., 2018). The total 
nociceptive score is expressed based on percentage of area under curve (AUC) over 0-5 
minutes for phase I and 15-60 min for Phase II. We used one way ANOVA for evaluating of 
significance between data. 

Electrophysiology study 

Extracellular single unit recording was performed (n=8) on day 8 after morphine tolerance 
was induced. Animals were anesthetized with 2.0-2.5% isoflurane (66% N2O and 33% O2). 
The rat was placed in a stereotaxic frame and a laminectomy was performed on  T13-L1 
region of the spinal cord. A tungsten electrode (Friedrick Hear & CO., Bowdoinham, ME, 
USA) was lowered into the dorsal horn while receptive fields on the ipsilateral hind paw 
were stimulated.  Extracellular single unit activity was recorded from neurons at the depths 
of 500-1000 μm from the surface of the dorsal horn. Recorded signals were amplified by a 
data acquisition system (Science Beam CO., Tehran, Iran), and were continuously captured 
on a Pentium 4 computer using the e-Probe 1-42 software (Science Beam CO., Tehran, Iran). 
The signals were filtered using a bandwidth of 300-3000 Hz. The number of stored digital 
spikes for each stimulus was counted in 1 ms bin sizes using e-Probe spike software 
(Science Beam CO., Tehran, Iran) to build  histogram of post-stimulus time. Besides, the 
responses of different fibers were separated according to their latencies (Ab-fibre 0–20 ms; 
Ad-fibre 20–90 ms; and C-fibre 90–300 ms). Responses that occurred after the C-fibre 
latency were characterized as post-discharge (300 to 800 ms). Wind-up was calculated as 
the total number of evoked action potentials after 16 stimuli at three times. In this sense, 
the C-fiber threshold minus the input spike is multiplied by 16. Input spike is the number of 
C-fiber latencies draw out by the first electrical stimulus. The WDR neurons were identified 
by the depth of the microelectrode and characteristic response profiles of the neurons. 
After characterization of the neuron by means of natural stimuli, 16 electrical pulses (0.5 
Hz, 2 ms wide) were applied via needles inserted into the center of the receptive field in rat 
paw. This provided a constant reproducible test stimulus for the experiment. Stimulation 
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was applied at 3 times the threshold current for C-fiber activation and a post-stimulus 
histogram (PSTH) was built and displayed by e-probe software (Science beam-Iran). From 
the PSTH, the C fiber -evoked response could be separated by latency and threshold from 
the Aβ, Aδ, post discharge, input spikes and wind up activity, and then quantified. Then we 
used one way ANOVA for evaluating of significance between data. 

Results  

Behavioral study 

1. administration of formalin into the rats' hind paws could induce biphasic behaviors of 
sever pain (licking/biting/shaking ) observed between 0–5 min (first phase) and 15–60 min 
(second phase) as there is no responses recorded between 5 and 15 min (silence phase).  
2. Administration of morphine (10 mg/kg daily i.p. for 8 days) to rats induces tolerance to 
the analgesic effects of morphine. There was no significant difference between the group 
that received chronic administration of morphine and the control group in both phases of 
the formalin test. However a single dose of morphine in non-tolerance rats provides a 
strong analgesic effect of the nociception stimulus in both phases of the formalin test 
(Figure 1) (P<0.0001).  
3. Single dose administration of muscimol and baclofen (0.5 mg/kg) could not decrease pain 
induced with formalin in the controlled group (Figure 2) but repeated administration of 
muscimol and baclofen could significantly reduce pain in both phases of formalin test and 
delays to the analgesic effects of morphine tolerance development as measured by the 
formalin test in male tolerate rats (Figure 3) (P<0.001). Pretreatment with muscimol and 
baclofen 30 min before morphine injection in 1, 3, 5, 8 days of injection strongly influenced 
on morphine tolerance in 8 days and delay in the development of morphine tolerance and 
no tolerance developed during the experiment. 

 

Figure 1. The effect of chronic administration of morphine on formalin pain. There is no significant 
differences in the antinociceptive effect of morphine between the morphine-tolerance group and the 
control group in both phases of the formalin test; But significant differences were found between  
the morphine-tolerance group and non-tolerant one (n=6, mean±SEM) ** p<0.01 **** p<0.0001. 
Statistical analyze were performed using the one-way ANOVA and Bonferroni correction tests 
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Figure 2. The effect of GABA agonists on morphine tolerance. There is significantly differences 
between baclofen and muscimol groups and morphine tolerance and control group. (n=6, 
mean±SEM) ** p<0.01 **** p<0.0001). GABA agonists reduced pain in both phases of formalin test. 
Compared baclofen+morphine tolerant group/morphine tolerance group and compared 
muscimol+morphine tolerant group/morphine tolerance group. Statistical analyze were performed 
using the one-way ANOVA and Bonferroni correction tests 

 
Figure 3. Antinociceptive effect of GABA agonists on non tolerant rats. Administration of GABA 
agonists (0.5 mg/kg) in non-tolerant rats didn’t show significantly different with control group. 
(n=6, mean±SEM). Compared baclofen group/control and compared muscimol group/control. 
Statistical analyses were performed using the one-way ANOVA and Bonferroni correction tests 

Electrophysiology study 

1. The Electrophysiology studies in morphine tolerate male rats in dorsal horn WDR neurons on 
day 8 showed that Aβ fiber evoked responses which were not significantly different with the 
controlled group. But, Aδ and C-fiber evoked responses from electrical stimuli that were 
performed on RFs of WDR neurons in hind-paw and were higher in the morphine-treated group 
in comparison to the controlled group (p<0.01). Moreover, a comparison of WDR neurons in 
morphine tolerance and the control group showed significant increases in post-discharge 
(P<0.01), input spikes (P<0.05), and windup spikes (P<0.01) (Figure 4).  
2. The effect of administration of GABA agonists in morphine tolerate rats were analyzed. The 
result showed significant decreases in Aδ-fiber (P<0.01) and C-fiber (P<0.01) mediated 
transmission to WDR neurons, as well as post-discharge (P<0.01), input spike (P<0.05) and wind-
up spikes (P<0.01) in comparison to the morphine tolerance group (Figure 5). Induction of wind 
up, input spike and post discharge that excitability reflect WDR neurons increase in comparison 
to the controlled group. This result showed that the chronic administration of morphine 
increases activation of WDR neurons. But, GABA agonists group could significantly attenuate 
induction of wind up, input spike and post discharge as they couldn't return these parameters to 
a baseline state. Although, when we used baclofen or muscimol alone (0.5 mg/kg) with bolus 
injection in non-tolerate rats, there was no significant response in Aδ and C-fiber evoked-
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responses in comparison to the controlled group in which the result showed that GABA agonists 
with this dose in non-tolerate rats don’t have analgesic effect while when we used them with 
chronic injection of morphine, they could decrease Aδ and C-fiber evoked-responses, increased 
antinociceptive effect of morphine tolerance and prevented the development of morphine. 

 

 

Control group 

 

 

Morphine tolerance group 

Figure 4. The PSTH of WDR neurons to electrical stimuli, in morphine tolerance and control groups. 
The responses evoked by the different fiber were quantified on the basis of latency measurements 
(Aβ-fiber, Aδ-fiber, and C-fiber). Results are presented as mean±SEM (n=10). The Aδ and C-fibre 
transmission onto WDR neurons were increased in morphine tolerate rats compared to control group, 
as well as PD, IS and Wind-up of WDR neurons (*P<0.05,** P<0.01) 

 

 
Figure 5. GABA agonists attenuate hyper activity of WDR neurons in morphine tolerate rats. GABA 
agonists 0.5 mg/kg inhibited Aδ and C-fiber mediated transmission onto WDR neurons (n=10) 
compared to morphine tolerate rats (n=10). GABA agonists also had a significant inhibitory effect on 
WDR neuronal post-discharge (PD) and inhibited wind-up, a potentiated response mediated by 
nociceptive C-fiber activity. GABA agonists had no effect to Aβ-evoked responses since there was no 
difference in Aβ evoked responses between control and morphine tolerance group. (*P<0.05, **P<0.01) 
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Discussion 

In the present study, it was showed that choronic administration of morphine (i.p.: 10 mg/kg for 
8 days) caused tolerance to the antinociceptive effects of morphine during the formalin test. It has 
been reported that intraperitoneal injection of chronic administration of morphine induces 
morphine tolerance in tail flick and hot plate test (Javan et al., 2003; Sepehri et al., 2010). The 
present data also indicated that acute administration of morphine (i.p.: 10 mg/kg) in rats has 
analgesic effect during the formalin tests. Also, the result of the current study showed that i.p. 
administration of GABA agonists augments chronic anti-nociceptive effects of morphine and 
block tolerance in the formalin test. GABA agonists could suppress the induction of the wind up of 
Aδ and C-fiber-evoked responses in single WDR spinal neurons and attenuate augmented 
activation of WDR neurons in morphine tolerant male rats in 8 days of morphine tolerance 
induction. There are other studies that confirm the present results. Using spinal cord extracellular 
single unit recording, another study showed that morphine tolerance increases c-fiber evoked 
activity and induction of LTP (Haugan et al., 2008). It has been shown that GABA has an 
important role in the development of morphine tolerance (Zarrindast and Mousa-Ahmadi, 1999). 
The interaction between opioid and GABA is a very interesting subject for study and has been 
studied in different models of morphine tolerance and dependence(Bannister et al., 2011; Zeng et 
al., 2006). There is always a controversial result with regards to GABA effects on the part of the 
CNS in morphine tolerance. It is established that GABA agonists can augment anti-nociceptive 
effect of morphine by reducing dopamine neurotransmitter in mesolimbic system (Zarrindast 
and Moghaddampour, 1991). Also, in this study, it was shown that GABA agonists below effective 
dose (0.5 mg/kg) can delay induction of morphine tolerance with impact on the spinal cord 
through reduction of hyper-activity of WDR neurons in morphine tolerance. Also, GABA could 
reduce induction of wind up in WDR neuron by attenuating C-fiber and Aδ-fiber activity, and also 
reduce the input spike; post discharge activity showed that the activity of WDR neurons 
decreased. In behavioral and clinical studies, it was found that chronic use of morphine causes 
hyperalgesia phenomenon (Hay et al., 2009). Studies on opioid tolerance and opioid-induced 
hyperalgesia have determined neuroplastisity alternations in the CNS. The most important site of 
opioid actions is the dorsal horn of the spinal cord. Interestingly, opioid induced pain and 
analgesia tolerance to opioid seem to share the same mechanisms with abnormal pain after 
peripheral nerve injury (neuropathic pains) (Mao et al., 1995). Both states are associated with 
reduction of anti-nociceptive effect of opioid and may be reversed by spinal GABA agonists by 
decreasing induction of wind up in morphine tolerance (Ji et al., 2003). Also, previous studies 
showed that in neuropathic pain models, WDR neuron had similar behavior with morphine 
tolerance model used in this experiment. This study emphasizes that (based on the result), one of 
the reasons for hyperalgesia development may be hyperactivity of WDR neurons which facilitates 
the induction of wind up in morphine tolerant rats. Also indicating the model of morphine 
tolerance, neuroplastic changes occurred in the spinal cord which can be similar to many models 
of neuropathic pain and long-term administration of morphine not only does not reduce pain, but 
also disrupts the pain pathway and consequently induce hyperalgesia. Also, the studies indicated 
that both GABA agonists could attenuate hyperalgesia in neuropathic pain and morphine 
tolerance in behavioral study (Patel et al., 2001; Eaton et al., 1999; Cohen and Mao, 2014). In this 
study, it is shown for the first time that GABA could decrease hyperactivity of WDR neurons and 
indicated the role of GABA agonists on the spinal level in morphine tolerance which has not been 



S. Mehrabadi & H. Manaheji                                               Int. J. Adv. Biol. Biomed. Res. 2019, 7(4):326-334 

333 | Page 

 
 

studied before. Both GABA agonists were used to show that activity of both receptors in the 
spinal cord could help to reduce morphine tolerance. For better understanding of the 
neuroplasticity changes in the morphine tolerance model, it is suggested that more molecular and 
electrophysiological studies on different types of morphine tolerance and in different sections 
and level of the spinal cord be conducted. In conclusion, the results of this study indicate that 
administration of GABA agonists is an effective way for attenuating development of morphine 
tolerance, and the underlying mechanism is reduction of WDR neuron hyper-responsiveness. 

Conclusion 

This study provides a new way for preventing the development of morphine tolerance in long 
term administration of morphine by GABA agonists, a general understanding on the development 
of morphine tolerance and the effect of chronic use of morphine and morphine along with GABA 
agonists on WDR neuron behaviors in spinal cord. 
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