Document Type : Original Article


Department of Zoology, Bharathiar University, Coimbatore-641046, Tamil Nadu, India


This work emphasized the survival and growth of the commercially important freshwater prawn, Macrobrachium rosenbergii post-larvae on formulated diets supplemented with a probiotic bacterium, Bacillus subtilis at five different serially diluted concentrations (10-1, 10-3, 10-5, 10-7 and 10-9). After 90 days of feeding, 10-7 (CFU, 2.76×10-7) concentration has produced the best results in increased survival rate, weight gain, basic biochemical constituents (total protein, amino acid, carbohydrate and lipid) and activities of digestive enzymes (protease, amylase and lipase) when compared with control diet prepared without B. subtilis. This was due to maintenance of good intestinal health, because of B. subtilis supplementation. The presence of B. subtilis, Bacillus cereus, Lactobacillus delbrueckii (subsp. bulgaricus), Lactobacillus casei, Lactobacillus rhamnosus and Streptococcus pyogenes have been identified in the gut of M. rosenbergii fed with B. subtilis supplemented diet, through 16S r-RNA gene sequencing and authenticated with NCBI GenBank. The pathogenic bacteria such as Escherichia coli, Klebsiella spp., and Staphylococcus spp., present in the control prawns as per our previous study (Manjula et al., 2018) have competitively been excluded by the experimental prawns fed with B. subtilis supplemented diet in the present study. Therefore, B. subtilis is recommended for sustainable production of M. rosenbergii seed.


Main Subjects

Agrebi, R, Haddar, A, Hajji, M, Frikha, F, Manni, L, Jellouli, K, Nasri, M. (2009). Fibrinolytic enzymes from a newly isolated marine bacterium Bacillus subtilis A26: characterization and statistical media optimization. Can. J. Microbiol., 55:1049-1061. 
Aly, SM. (2009). Probiotics and Aquaculture. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4(074), pp. 1-16. 
AOAC. (2005). Association of Official Analytical Chemists; Official Methods of Analysis. 18th edn. Arlington, VA, USA.
APHA. (2005). American Public Health Association. Standard Methods for the Examination of Water and Waste Water. Method 2540. 21st  Edition.
Balaji, K, Sahu, NP, Tripathi, SD. (2002). Effect of different protein energy ratio in isocaloric diet on growth and survival of post larvae of Macrobrachium rosenbergii (De Man). Aquaculture Nutrition Workshop Proceeding. pp. 7-10.
Balazs, GH, ,Ross, E. (1976). Effect of protein source and level on growth and performance of the captive freshwater prawn, Macrobrachium rosenbergiiAquaculture, 7:229–313.
Barnes, H, Blackstock, J. (1973). Estimation of lipids in marine animals and tissues. Detail investigation of the sulpho-phosphovanillin method for total lipids. J. Exp. Mar. Biol. Ecol.,  12:103–118.
Bernfeld, P. (1955) Amylases, alpha and beta. In: Colowick, S. P. and Kaplan, N. O (Eds.). Methods in enzymology, New York: Academic Press, 1:149–158. (55)01021-5. 
Bidhan, CD, Meena, DK,  Behera, BK, Das, P, Mohapatra, PKD, Sharma, AP. (2014). Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. Fish Physiol. Biochem., 40:921–971. DOI 10.1007/s10695-013-9897-0.
Brown, JH. (1991). Freshwater prawns. In: Production of Aquatic Animals, World Animal Science, C4, (Ed. by C.E. Nash), Elsevier Scientific Publishing, Amsterdam. pp. 31-43.
Cain, K, Swan, C. (2010). Barrier function and immunology. In: the multifunctional gut of fish (ed. by M. Grosell, A. P. Farrell & C. J. Brauner). Academic Press, Amsterdam. pp. 111-134.
Chunchom, S, Deeseenthum, S, Kongbanthad, W,  Pakdeenarong, N. (2010). Culturing of the giant freshwater prawns fed with Thai fairy Shrimp, Branchinella thailandensis. J. Microscopy Soc. Thailand, 24:9-12.
Cruz, PM, Ibanez, AL, Hermosillo, OAM, Saad HCR. (2012). Use of Probiotics in Aquaculture. ISRN Microbiology,  doi:10.5402/2012/916845 .
Das, NN, Saad, CR, Ang, KJ, Law, AT, Harmin, SA. (1996). Diet formulation for Macrobrachium rosenbergii (de Man) broodstock based on essential amino acid profile of its egg. Aquacult. Res., 27(7):543-555.
Dash, BK, Rahman, MM, Sarker, PK. (2015). Molecular Identification of a Newly Isolated Bacillus subtilis BI19 and Optimization of Production Conditions for Enhanced Production of Extracellular Amylase. BioMed Res. Int., Article ID 859805, 9 pages
Fadul, AE, Obeid, E,  Alawad, AM,  Ibrahim, HM. (2015). Isolation and Characterization of Bacillus Subtillus with Potential Production of Nattokinase. Int. J. Adv. Res., 3(3):94-101. 
Folch, J, Lees, M, Bloane-Stanley, GH.  (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 266:497–509.
Furne, M, Hidalgo, MC, Lopez, A, Garcia-Gallego, M, Morales, AE, Domezain, A, Domezaine, J, Sanz, A. (2005). Digestive enzyme activities in Adriatic sturgeon Acipencer naccarii and rainbow trout Oncorhynchus mykiss. A comparative study. Aquaculture, 250:391-398.
Ghosh, K, Sen, SK, Ray, AK. (2004). Growth and survival of rohu Labeo rohita (Hamilton) spawn fed diets fermented with intestinal bacterium, Bacillus circulans. Acta Ichthyol. Et Piscat., 34:155–165.
Ghosh, S, Sinha, A, Sahu, C. (2008). Dietary probiotic supplementation on growth and health of live-bearing ornamental fishes. Aquac. Nutr., 14(4):289–299.
Gomez, R, Geovanny, D, Shen, MA. (2008). Influence of probiotics on the growth and digestive enzyme activity of white Pacific shrimp (Litopenaeus vannamei). Oceanic Coastal Sea Res., 7:215–218.
Haroun, EREL, Goda, AMAS, Chowdhury, MAK. (2006). Effect of dietary probiotic Biogen® supplementation as a growth promoter on growth performance and feed utilization of Nile tilapia Oreochromis niloticus (L.). Aquac. Res.,37:1473-1480.   
Holt, JG, Krieg, NR, Sneath, PHA, Staley, JT, Williams, ST. (1996). Bergey's Manual of Determination Bacteriology, 9th Edition,Williams and Wilkins, Baltimore, (MD). 
Holzapfel, WH, Haberer, P, Geisen, R, Björkroth, J, Schillinger, U. (2001). Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr.,  73(suppl):365S–373S.
Holzapfel, WH, Haberer, P, Snel, J, Schillinger, U, Jos, HJ, Veld, H. (1998). Overview  of  gut  flora  and  probiotics. Int. J. Food  Microbiol., 41:85–101.
Hoseinifar, SH, Sun, YZ, Wang, A, Zhou, Z. (2018).Probiotics as Means of Diseases Control in Aquaculture, a Review of Current Knowledge and Future Perspectives. Front. Microbiol.,
Jain, IB, Bhavan, PS, Kalpana, R, Manjula, T, Dharani, C, Muralisankar, T, Veerapandi, A, Karthik, M. (2020a). Performance of probiotic bacterium, Enterococcus gallinarum enriched Artemia franciscana nauplii on survival, growth and basic biochemical constituents of the prawn Macrobrachium rosenbergii post larvae. Schol. Aca. J. Biosci., 8(2):13-22.
Jain, IB, Bhavan, PS, Manjula, T, Dharani, C, Kalpana, R, Muralisankar, T, Aiswaryalakshmi, S, Karthik, M. (2020b). Growth Performance of the Prawn Macrobrachium rosenbergii Post Larvae Fed with Probiotic Bacterium, Enterococcus hirae Enriched Artemia franciscana Nauplii. Int. J. Zool. Invest., 6(1):107-121.
Jayanthi, L, Bhavan, PS, Srinivasan, V, Muralisankar, T, Manickam, N. (2015a). Probiotics product (LactoBacil®plus) on improvement of survival, growth, digestive enzymes activity, nutritional status and gut microflora of the prawn Macrobrachium rosenbergii. Int. J. Curr. Res., 7:11440–11453.
Jayanthi, L, Bhavan, PS, Srinivasan, V, Muralisankar, T, Manickam, N. (2015b). Dietary supplementation of probiotics product (ViBact*) on the survival, growth, biochemical constituents and gut microfl ora of the giant freshwater prawn Macrobrachium rosenbergii post-larvae. Asian J. Biochem. Pharm. Res., 2:67–88.
Karthik, M, Bhavan, PS, Manjula, T. (2018a). Growth Promoting Potential and Colonization Ability of Probiotics (Bacillus coagulans and Bacillus subtilis) on the Freshwater Prawn Macrobrachium rosenbergii Post-Larvae. Insights Biol. Med., 2:007–018. 
Karthik, M, Bhavan, PS, Seenivasan, V, Asaikkutti, A, Muralisankar, T, Mahendran, R. (2018b). Dietary Supplementation of Lactobacillus fermentum for Improving the Survival, Growth and Nutritional Profiles of the Prawn Macrobrachium rosenbergii, and 16S rDNA based Identification of its Establishment. Scholar Rep., V3-I1-06:38–62. 
Karthik, M,  Bhavan, PS. (2018). Supplementation of Lactobacillus brevis for Growth Promotion of the Freshwater Prawn Macrobrachium rosenbergii Post Larvae and identification of Gut Microflora through 16s r-DNA. Res. J. Biotech., 13(1):34–50.
Kavitha, M, Raja, M,  Perumal, P. (2018). Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton, 1822). Aquacul. Rep., 11:59-69.
Kumar, NR, Raman, RP, Jadhao, SB, Brahmchari, RK, Kumar, K, Dash, G. (2013). Effect of dietary supplementation of Bacillus licheniformis on gut microbiota, growth and immune response in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Aquacul. Int., 21(2):387–403. 
Kumar, R, Mukherjee, SC, Prasad, KP, Pal, AK. (2006). Evaluation of Bacillus subtilis as a probiotic to Indian major carp Labeo rohita (Ham.). Aquacul. Res., 37:1215-1221. 
Li,  J, Xu, Y, Jin, L, Li,  X. (2015).  Effects of a probiotic mixture (Bacillus subtilis YB-1 and Bacillus cereus YB-2) on disease resistance and non-specific immunity of sea cucumber, Apostichopus japonicus (Selenka). Aquacul. Res., 46:3008–3019.
Lowry, OH, Rosenbrough, WJ, Fair, AL, Randall, RJ. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193:265–275.
Manjula, S, Bhavan, PS, Karthik, M, Anitha, D, Kalpana, R, Manjula, T. (2018). Survival, Growth, Activities of Digestive Enzymes, Concentrations of Basic Biochemical Constituents and Competitive Exclusion of Pathogenic Bacteria in Bacillus coagulans Supplemented Diet Fed Macrobrachium rosenbergii Post-Larvae. Int. J. Res. Stud. Sci. Eng. Technol., 5(12):9-22.
Manjula, S, Bhavan, PS, Udayasuriyan, R, Anitha, D, Kalpana, R, Manjula, T. (2019). Molecular identification of gut microflora of Bacillus coagulans supplemented feed fed Macrobrachium rosenbergii post-larvae using 16S rRNA. Int. J. Biotech., 8(1):19-37.
Millamena, OM., Teruel, MB., Kanazawa, A, Teshima, S. (1999). Quantitative dietary requirements of postlarval tiger shrimp, Penaeus monodon, for histidine, isoleucine, leucine, phenylalanine and tryptophan. Aquaculture, 179:169–179.
Mitra, G, Mukopadhyay, PK, Chattopadhyay, DN. (2005). Nutrition and feeding in freshwater prawn (Macrobrachium rosenbergii) farming. Aquatic Feeds: Formulat. Beyond, 2:17–19.
Moore, S, Stein, WH. (1948). Photometris Ninhydrin Method for Use in the Chromatography of Amino Acids.  J. Biol. Chem., 176:367–388.
Mukherjee, AK, Rai, SK, Thakur, R, Chattopadhyay, P, Kar, SK. (2012). Bafibrinase: A non-toxic, non-hemorrhagic, direct-acting fibrinolytic serine protease from Bacillus sp. strain AS-S20-I exhibits in vivo anticoagulant activity and thrombolytic potency. Biochimie, 94:1300-1308.
Narmatha, V, Bhavan, PS, Karthik, M, Srinivasan, V, Mahendran, R, Satgurunathan, T. (2017). Lactobacillus fermentum on ammonia reduction and growth promotion of Macrobrachium rosenbergii post larvae, and in vitro competitive exclusions of pathogenic bacteria. Int. J. Fish. Aqua. Stud., 5(1):506–514.
New, MB, Valenti, WC, Tidwell, JH, D’Abramo, LR, Kutty, MN. (2010). Freshwater prawns: biology and farming. Oxford: Wiley-Blackwell. 
Newman, MW, Lutz, PL, Snedaker, SC. (1982). Temperature effects and feed ingestion and assimilation of nutrients by the Malaysian prawn, Macrobrachium rosenbergii (de Man). J. World Maricult. Soc., 13(1-4):95-103.
Pinchuk, IV, Bressollier, P, Verneuil, B, Fenet, B, Sorokulova, IB, Megraud, F, Urdaci, MC. (2001).  In Vitro Anti-Helicobacter pylori Activity of the Probiotic Strain Bacillus subtilis 3 Is Due to Secretion of Antibiotics. Antimicrob. Agent. Chemotherapy, 45(11):3156-3161. 
Raida, MK, Larsen, JL, Nielsen, ME,  Buchmann, K. (2003). Enhanced resistance of rainbow trout, Oncorhynchus mykiss (Walbaum), against Yersinia ruckeri challenge following oral administration of Bacillus subtilis and B. licheniformis (BioPlus2B). J. Fish Diseases, 26:495–498.
Ran, C,  Carrias, A, Williams, MA, Capps, N, Dan, BCT, Newton, JC, Kloepper, JW, Ooi, EL, Browdy, CL, Terhune, JS, Liles, MR. (2012). Identification of Bacillus Strains for Biological Control of Catfish Pathogens. PLOS ONE, 7(9):e45793.
Rengpipat, S, Tunyanun, A, Fast, AW, Piyatiratitivorakul, S, Menasveta, P. (2003). Enhanced growth and resistance to Vibrio challenge in pond-reared black tiger shrimp Penaeus monodon fed a Bacillus probiotic. Dis. Aquat. Org., 55:169-173. 
Roe, SH. (1955). The determination of sugar in blood and spinal fluid with anthrone reagent. J. Biol. Chem., 212:334–343.
Saad, AS, Habashy, MM, Sharshar, KM. (2009). Growth Response of the freshwater prawn, Macrobrachium rosenbergii (De Man), to diets having different levels of Biogen®. World Appl. Sci. J., 6:550–556.
Sambrook, J, Fritschi, EF, Maniatis, T. (1989). Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, New York.
Seenivasan C, Radhakrishnan S, Shanthi R, Muralisankar T, Bhavan PS. (2014). Influence  of  probiotics  on survival,  growth,  biochemical  changes  and  energy utilization  performance  of Macrobrachium rosenbergii post-larvae. Proceed. Zoolog. Soc., 68(1):74–83. DOI: 10.1007/s12595-014-0097-4.
Seenivasan, C, Bhavan, PS, Radhakrishnan, S, Muralisankar, T, Immanuel, G, Srinivasan, V, Manickam, N. (2013). Effect of Saccharomyces cerevisiae on survival, growth, biochemical constituents and energy utilization in the prawn Macrobrachium rosenbergii. Int. J. Appl. Biol.  Pharm. Technol., 4:39–47.
Seenivasan, C, Bhavan, PS, Radhakrishnan, S, Shanthi, R. (2012). Enrichment of Artemia nauplii with Lactobacillus sporogenes for enhancing the survival, growth and levels of biochemical constituents in the post larvae of the freshwater prawn Macrobrachium rosenbergii. Turkish J. Fish. Aqua. Sci., 12:3–31. 
Seenivasan, C, Bhavan, PS, Radhakrishnan, S. (2011). Effect of probiotics (BinifitTM) on survival, growth, biochemical constituents and energy budget of the freshwater prawn Macrobrachium rosenbergii post larvae. Elix. Aquacul., 41:5919–5927.
Sharma, S, Agarwal, N, ,Verma, P. (2012).  Probiotics: The Emissaries of Health from Microbial World. J. Appl. Pharm. Sci., 02(01):138-143.
Sudha, A, Bhavan, PS, Manjula, T, Kalpana, R, Karthik, M, (2019a). Bacillus licheniformis as a probiotic bacterium for culture of the prawn Macrobrachium rosenbergii. Res. J. Life Sci. Bioinfor. Pharm. Chem. Sci., 5(4):44-61.
Sudha, A, Bhavan, PS, Udayasurian, R, Manjula, T, Kalpana, R, Karthik, M. (2019b). Molecular Identification of Gut Microflora of the Prawn Macrobrachium rosenbergii Fed with Probiotic Bacterium Bacillus licheniformis Supplemented Diet. Haya Saudi J. Life Sci., 4(9):303-317.
Sumi, H, Nakajima, N, Yatagai, C. (1995). A unique strong fibrinolytic enzyme (Katsuwokinase) in Skipjack shiokara, a Japanese traditional fermented food, Comp. Biochem. Physiol. 112B: 543-547.
Suralikar, V, Sahu, NP. (2001).  Effect of Feeding Probiotic (Lactobacillus cremoris) on Growth and Survival of Macrobrachium rosenbergii Post Larvae. J. Appl. Anim. Res.,  20(1):17–124. 
Tekinay, AA, Davies, SJ. (2001). Dietary carbohydrate level influencing feed intake, nutrient utilisation and plasma glucose concentration in the rainbow trout, Oncorhynchus mykiss. Turkish J.Vet. Animal Sci., 25:657–666.
Teshima, S, Koshio, S, Kanazawa, A, Oshida, K. (1992). Essential fatty acids of the prawn Macrobracbium rosenbergii. In: Abstacts of the 3rd Asian Fisheries Forum, 26-30 October,   Singapore, p. 90. Asain Fisheries Society, Manila, Philippines.
Urdaci, MC, Pinchuk, I. (2004). Antimicrobial Activity of Bacillus Probiotics. Book Chapter-15, In:   Bacterial spore formers – Probiotics and emerging applications (Edition: Ed. Horizon Bioscience, Norfolk, U.K).
Vaseeharan, B,  Ramasamy, P. (2003). Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. Lett. Appl. Microbiol., 36:83-87.
Venkat, HK, Sahu, NP, Jain, KK. (2004). Effect of feeding Lactobacillus based probiotics on the gut microflora, growth and survival of post larvae of Macrobranchium rosenbergii (de Man). Aquacul. Res., 35:501–507.
Venkataramani, VK, Rajagopalasamy, CBT, Ravi, D. (2002). Effect of formulated feeds on the growth and broodstock development in Macrobrachium rosenbergii. Asian Fish. Sci., 15: 357-364.
Wang, SL, Wu, YY, Liang, TW. (2011). Purification and biochemical characterization of a nattokinase by conversion of shrimp shell with Bacillus subtilis TKU007, New Biotech.,  28(2):196-202.