Document Type : Original Article


1 Department of Biochemistry, Bahauddin Zakariya University, Multan, Multan-66000, Pakistan

2 Institute of Food Science & Nutrition, Bahauddin Zakariya University, Multan, Multan-66000, Pakistan

3 Department of Chemistry, Kohat University of Science and Technology, Kohat, Kohat-26080 KP, Pakistan


Background: SARS-CoV-2 is a novel coronavirus discovered in December 2019 and is responsible for pandemic disease COVID-19. In the absence of any available vaccines or drugs to combat the virus, it has caused enormous damage.
Methods: An in-silico docking approach was applied to determine potential inhibitors of SARS-CoV-2 RNA-MTase by screening against a ligand library of FDA approved antiviral compounds.
Results: Ten compounds including Daclatasvir, Pibrentasvir, Tenofovir, Velpatasvir, Grazoprevir, Ledipasvir, Elbasvir, Delavirdine, Nilutamide, and Ribavirin triphosphate showed a strong binding affinity with RNA-MTase of which Daclatasvir and Pibrentasvir exhibited the highest affinity.  Moreover, Daclatasvir, Grazoprevir, and Tenofovir, which have recently been reported to have a binding affinity with other SARS-CoV-2 proteins, showed good binding interactions with RNA-MTase, suggesting a role to act as dual inhibitors.
Conclusion: The suggested antiviral compounds can tightly bind to RNA-MTase of SARS-Cov-2 and thus have the potential to be used against this deadly virus. Importantly, as FDA already approved, these drugs do not need to undergo toxicity evaluation.

Graphical Abstract

Virtual Screening and Molecular Docking of FDA Approved Antiviral Drugs for the Identification of Potential Inhibitors of SARS-CoV-2 RNA-MTase Protein


Main Subjects

1. Mesel-Lemoine M, Millet J, Vidalain P-O, Law H, Vabret A, Lorin V, Escriou N, Albert M L, Nal B, Tangy F. (2012). A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes. Journal of virology, 86(14): 7577-7587.
2. Fehr A R, Perlman S. (2015). Coronaviruses: an overview of their replication and pathogenesis Coronaviruses (pp. 1-23): Springer.
3. Gorbalenya A E, Baker S C, Baric R, Groot R J d, Drosten C, Gulyaeva A A, Haagmans B L, Lauber C, Leontovich A M, Neuman B W. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature microbiology, 5(4): 536.
4. Fisher D, Heymann D. (2020). Q&A: The novel coronavirus outbreak causing COVID-19. BMC medicine, 18(1): 1-3.
5. Fojo A T, Stennis N L, Azman A S, Kendall E A, Shrestha S, Ahuja S D, Dowdy D W. (2017). Current and future trends in tuberculosis incidence in New York City: a dynamic modelling analysis. The Lancet Public Health, 2(7): e323-e330.
6. Liu C, Zhou Q, Li Y, Garner L V, Watkins S P, Carter L J, Smoot J, Gregg A C, Daniels A D, Jervey S. (2020). Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases: ACS Publications.
7. Su S, Wong G, Shi W, Liu J, Lai A C, Zhou J, Liu W, Bi Y, Gao G F. (2016). Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in microbiology, 24(6): 490-502.
8. Onder G, Rezza G, Brusaferro S. (2020). Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. Jama, 323(18): 1775-1776.
9. Mizumoto K, Kagaya K, Zarebski A, Chowell G. (2020). Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance, 25(10): 2000180.
10. Wang C, Liu L, Hao X, Guo H, Wang Q, Huang J, He N, Yu H, Lin X, Pan A. (2020). Evolving epidemiology and impact of non-pharmaceutical interventions on the outbreak of Coronavirus disease 2019 in Wuhan, China. MedRxiv.
11. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research, 30(3): 269-271.
12. Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, Li Y, Hu Z, Zhong W, Wang M. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell discovery, 6(1): 1-4.
13. Elfiky A A. (2020). Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life sciences: 117592.
14. ul Qamar M T, Alqahtani S M, Alamri M A, Chen L-L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of pharmaceutical analysis, 10(4): 313-319.
15. Beck B R, Shin B, Choi Y, Park S, Kang K. (2020). Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Computational and structural biotechnology journal, 18: 784-790.
16. Li F. (2016). Structure, function, and evolution of coronavirus spike proteins. Annual review of virology, 3: 237-261.
17. Mou H, Raj V S, Van Kuppeveld F J, Rottier P J, Haagmans B L, Bosch B J. (2013). The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. Journal of virology, 87(16): 9379-9383.
18. Belov G A, Feng Q, Nikovics K, Jackson C L, Ehrenfeld E. (2008). A critical role of a cellular membrane traffic protein in poliovirus RNA replication. PLoS pathog, 4(11): e1000216.
19. Brito A F, Pinney J W. (2017). Protein–protein interactions in virus–host systems. Frontiers in Microbiology, 8: 1557.
20. Pembroke J T. (2000). Bio-molecular modelling utilising RasMol and PDB resources: a tutorial with HEW lysozyme. Biochemistry and Molecular Biology Education, 28(6): 297-300.
21. Tian W, Chen C, Lei X, Zhao J, Liang J. (2018). CASTp 3.0: computed atlas of surface topography of proteins. Nucleic acids research, 46(W1): W363-W367.
22. Chenna R, Sugawara H, Koike T, Lopez R, Gibson T J, Higgins D G, Thompson J D. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic acids research, 31(13): 3497-3500.
23. Bouvet M, Debarnot C, Imbert I, Selisko B, Snijder E J, Canard B, Decroly E. (2010). In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS pathog, 6(4): e1000863.
24. Gupta M, Prasad Y, Sharma S K, Jain C K. (2017). Identification of Phosphoribosyl-AMP cyclohydrolase, as drug target and its inhibitors in Brucella melitensis bv. 1 16M using metabolic pathway analysis. Journal of Biomolecular Structure and Dynamics, 35(2): 287-299.
25. Aamir M, Singh V K, Dubey M K, Meena M, Kashyap S P, Katari S K, Upadhyay R S, Umamaheswari A, Singh S. (2018). In silico prediction, characterization, molecular docking, and dynamic studies on fungal SDRs as novel targets for searching potential fungicides against Fusarium wilt in tomato. Frontiers in pharmacology, 9: 1038.
26. Vilar S, Cozza G, Moro S. (2008). Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Current topics in medicinal chemistry, 8(18): 1555-1572.
27. Decroly E, Imbert I, Coutard B, Bouvet M, Selisko B, Alvarez K, Gorbalenya A E, Snijder E J, Canard B. (2008). Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2′ O)-methyltransferase activity. Journal of virology, 82(16): 8071-8084.
28. Wang Y, Sun Y, Wu A, Xu S, Pan R, Zeng C, Jin X, Ge X, Shi Z, Ahola T. (2015). Coronavirus nsp10/nsp16 methyltransferase can be targeted by nsp10-derived peptide in vitro and in vivo to reduce replication and pathogenesis. Journal of virology, 89(16): 8416-8427.
29. Horsley-Silva J L, Vargas H E. (2017). New therapies for hepatitis C virus infection. Gastroenterology & Hepatology, 13(1): 22-31.
30. Fung H B, Stone E A, Piacenti F J. (2002). Tenofovir disoproxil fumarate: a nucleotide reverse transcriptase inhibitor for the treatment of HIV infection. Clinical Therapeutics, 24(10): 1515-1548.
31. Prinapori R, Di Biagio A. (2015). Efficacy, safety, and patient acceptability of elvitegravir/cobicistat/emtricitabine/tenofovir in the treatment of HIV/AIDS. Patient preference and adherence, 9: 1213-1218.
32. Shelton M J, Hewitt R G, Adams J, Della-Coletta A, Cox S, Morse G D. (2003). Pharmacokinetics of ritonavir and delavirdine in human immunodeficiency virus-infected patients. Antimicrobial agents and chemotherapy, 47(5): 1694-1699.
33. Calvaruso V, Mazzarelli C, Milazzo L, Badia L, Pasulo L, Guaraldi G, Lionetti R, Villa E, Borghi V, Carrai P. (2019). Daclatasvir-based regimens in HCV cirrhosis: experience from the Italian early access program. Scientific reports, 9(1): 1-8.
34. Cotter T G, Jensen D M. (2019). Glecaprevir/pibrentasvir for the treatment of chronic hepatitis C: design, development, and place in therapy. Drug design, development and therapy, 13: 2565-2577.