Document Type : Review Article

Authors

1 Department of Physics, Faculty of Science, University of Kashan, Kashan, Iran

2 Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran

10.22034/ijabbr.2022.561871.1417

Abstract

Acute coronavirus syndrome (SARS-CoV-2) leads to the COVID-19 epidemic. In accordance with the WHO, the epidemic remains a serious danger to the general health because of its global spread and higher transmission rates. A scope of measures is needed to slow the spread of the epidemic and save lives, including the continuous assessment and cautious adjustment of general health reactions to the medical treatment. In such a manner, the expansion of antiviral nanostructures by improved surface designing may be valuable in combating this new virus. Quantum dots are multifaceted agents with the potency to fight or prevent the activity of the Coronavirus. For qualitative diagnosis, a simple and inexpensive bioassay method based on Fluorescence-based QDs nanoparticles can be used to detect SARS-CoV-2 antibodies. Optimization of quantum dots with effective functional molecules against SARS-CoV-2 could extend the nanostructures to the antiviral treatment and eradicate future epidemics, slowing down and possibly ending the spread of viral infections. QDs can be used to promote individual clinical therapy in the future based on each patient's molecular protocols individually. This study addresses how quantum dots (QDs) are useful in diagnosing SARS-CoV-2 infection and future pandemics.

Graphical Abstract

Effects of Fluorescent Quantum Dots on COVID-19 Detection:‎‏ ‏A Survey on Present ‎Findings, Challenges, and Future Viewpoints

Keywords

Main Subjects

  1. Hoseyni MG, Rostami A, Ameri F, Ghadimi S, Esfahani H. (2022). Most prevalent laboratory findings in patients with COVID-19. Eurasian Chemical Communications, 4(4): 286-294. ‎‎[Crossref], [Google Scholar], [Publisher]
  2. Zhou P, Shi ZL. (2021). SARS-CoV-2 spillover events. Science, 371(6525): 120-122. [Crossref], [Google Scholar], [Publisher]
  3. Kumar S, Nyodu R, Maurya VK, Saxena SK. (2020). Morphology, genome organization, replication, and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In Coronavirus Disease 2019 ‎‎(COVID-19) (pp. 23-31). Springer, Singapore. [Crossref], [Google Scholar], [Publisher]
  4. Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA, Pasquali M, ... & Delogu LG. (2020). Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS nano, 14(6): 6383-6406. ‎ ‎[Crossref], [Google Scholar], [Publisher]
  5. Abbasi BH, Nazir M, Muhammad W, Hashmi SS, Abbasi R, Rahman L, Hano C. (2019). A comparative evaluation of the antiproliferative activity against Hepg2 liver carcinoma cells of plant-derived silver nanoparticles from basil extracts with contrasting anthocyanin contents. Biomolecules, 9(8): 320. ‎‎[Crossref], [Google Scholar], [Publisher]
  6. Singh L, Parboosing R, Kruger HG, Maguire GE, Govender T. (2016). Intracellular localization of gold nanoparticles with targeted delivery in MT-4 lymphocytes. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(4): 045013. [Crossref], [Google Scholar], [Publisher]
  7. Łoczechin A, Séron K, Barras A, Giovanelli E, Belouzard S, Chen YT, ... & Szunerits S. (2019). Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS applied materials & interfaces, 11(46): 42964-42974. [Crossref], [Google Scholar], [Publisher]
  8. Bera D, Qian L, Tseng TK, Holloway PH. (2010). Quantum dots and their multimodal applications: a Materials, 3(4): 2260-2345. [Crossref], [Google Scholar], [Publisher]
  9. Khosravanian A, Moslehipour A, Ashrafian H. (2021). A review on bioimaging, biosensing, and drug delivery systems based on graphene quantum dots. Progress in Chemical and Biochemical Research, 4(1): 44-56. [Crossref], [Google Scholar], [Publisher]
  10. Moslehipour A. (2020). Synthesis of a fluorescent mechanochromic polymer based on TGA-capped CdTe Quantum Dots and liquid latex. Advanced Journal of Chemistry-Section B, 2(4): 179-186. ‎ ‎[Crossref], [Google Scholar], [Publisher]
  11. Gurunathan S, Qasim M, Choi Y, Do JT, Park C, Hong K, ... & Song H. (2020). Antiviral potential of nanoparticles—Can nanoparticles fight against coronaviruses?. Nanomaterials, 10(9): 1645. ‎ ‎[Crossref], [Google Scholar], [Publisher]
  12. Shukla AK. (2017). EMR/ESR/EPR spectroscopy for characterization of nanomaterials. Springer India.
  13. Tong T, Hu H, Zhou J, Deng S, Zhang X, Tang W, ... & Liang J. (2020). Glycyrrhizic‐acid‐based carbon dots with high antiviral activity by multisite inhibition mechanisms. Small, 16(13) : 1906206. ‎ ‎[Crossref], [Google Scholar], [Publisher]
  14. Chen Y, Liu Q, Guo D. (2020). Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of medical virology, 92(4): 418-423. [Crossref], [Google Scholar], [Publisher]
  15. Madhugiri R, Fricke M, Marz M, Ziebuhr J. (2016). Coronavirus cis-acting RNA elements. Advances in virus research, 96: 127-163. [Crossref], [Google Scholar], [Publisher]
  16. Rezaei S, Naghipour B, Rezaei M, Dadashzadeh M, Sadeghi S. (2022). Chemical evaluation of gastrointestinal, coronary and pulmonary complications in patients admitted to the intensive care unit. Eurasian Chemical Communications, 557-566. [Crossref], [Google Scholar], [Publisher]
  17. Zarei A, Fardood ST, Moradnia F, Ramazani A. (2020). A review on coronavirus family persistency and considerations of novel type, COVID-19 features. Eurasian Chemical Communications, 798-811. [Crossref], [Google Scholar], [Publisher]
  18. Iannazzo D, Pistone A, Ferro S, De Luca L, Monforte AM, Romeo R, ... & Pannecouque C. (2018). Graphene quantum dots based systems as HIV inhibitors. Bioconjugate chemistry, 29(9): 3084-3093. ‎ ‎[Crossref], [Google Scholar], [Publisher]
  19. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology, 2(12): 751-760. [Crossref], [Google Scholar], [Publisher]
  20. Jha S, Mathur P, Ramteke S, Jain NK. (2018). Pharmaceutical potential of quantum dots. Artificial cells, nanomedicine, and biotechnology, 46(sup1): 57-65. [Crossref], [Google Scholar], [Publisher]
  21. Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, ... & Medhi B. (2020). Drug targets for corona virus: A systematic review. Indian journal of pharmacology, 52(1): 56. [Crossref], [Google Scholar], [Publisher]
  22. Draz MS, Shafiee H. (2018). Applications of gold nanoparticles in virus detection. Theranostics, 8(7): ‎‎ [Crossref], [Google Scholar], [Publisher]
  23. Nikazar S, Sivasankarapillai VS, Rahdar A, Gasmi S, Anumol PS, Shanavas MS. (2020). Revisiting the cytotoxicity of quantum dots: An in-depth overview. Biophysical reviews, 12(3): 703-718. [Crossref], [Google Scholar], [Publisher]
  24. Hatamluyi B, Rezayi M, Jamehdar SA, Rizi KS, Mojarrad M, Meshkat Z, ... & Boroushaki MT. ‎‎(2022). Sensitive and specific clinically diagnosis of SARS-CoV-2 employing a novel biosensor based on boron nitride quantum dots/flower-like gold nanostructures signal amplification. Biosensors and Bioelectronics, 207: ‎‎ [Crossref], [Google Scholar], [Publisher]
  25. Zheng Y, Song K, Cai K, Liu L, Tang D, Long W, ... & Xu K. (2022). B-Cell-Epitope-Based Fluorescent Quantum Dot Biosensors for SARS-CoV-2 Enable Highly Sensitive COVID-19 Antibody Detection. Viruses, 14(5):‎‎ [Crossref], [Google Scholar], [Publisher]
  26. Zhang Q, Li J, Li Y, Tan G, Sun M, Shan Y, ... & Wu X. (2022). SARS-CoV-2 detection using quantum dot fluorescence immunochromatography combined with isothermal amplification and Cas13a/CRISPR. Biosensors and Bioelectronics, 113978. [Crossref], [Google Scholar], [Publisher]
  27. Zhao Y, Chen J, Hu Z, Chen Y, Tao Y, Wang L, ... & Liu H. (2022). All-solid-state SARS-CoV-2 protein biosensor employing colloidal quantum dots-modified electrode. Biosensors and Bioelectronics, 113974. ‎ ‎[Crossref], [Google Scholar], [Publisher]
  28. Bardajee GR, Zamani M, Mahmoodian H, Elmizadeh H, Yari H, Jouyandeh L, ... & Sharifi M. (2022). Capability of novel fluorescence DNA-conjugated CdTe/ZnS quantum dots nanoprobe for COVID-19 sensing. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 269: 120702. ‎ ‎[Crossref], [Google Scholar], [Publisher]
  29. Pramanik A, Sharma PC, Patibandla, S, Gao Y, Ruppa-Kasani V, Goli J, ... & Ray PC. (2022). Blocking SARS-CoV-2 Delta Variant (B. 1.617. 2) Spike Protein Receptor-Binding Domain Binding with the ACE2 Receptor of the Host Cell and Inhibiting Virus Infections Using Human Host Defense Peptide-Conjugated Graphene Quantum Dots. ACS omega, 7(9): 8150-8157. [Crossref], [Google Scholar], [Publisher]
  30. Jia J, Ao L, Luo Y, Liao T, Huang L, Zhuo D, ... & Hu J. (2022). Quantum dots assembly enhanced and dual-antigen sandwich structured lateral flow immunoassay of SARS-CoV-2 antibody with simultaneously high sensitivity and specificity. Biosensors and Bioelectronics, 198: 113810. [Crossref], [Google Scholar], [Publisher]
  31. Li N, Shi L, Zou X, Wang T, Wang D, Gong Z, Fan M. (2022). Fluorescence immunoassay rapid detection of 2019-nCoV antibody based on the fluorescence resonance energy transfer between graphene quantum dots and Ag@ Au nanoparticle. Microchemical Journal, 173: 107046. ‎ ‎[Crossref], [Google Scholar], [Publisher]
  32. Zhou Y, Chen Y, Liu W, Fang H, Li X, Hou L, ... & Xiong, Y. (2021). Development of a rapid and sensitive quantum dot nanobead-based double-antigen sandwich lateral flow immunoassay and its clinical performance for the detection of SARS-CoV-2 total antibodies. Sensors and Actuators B: Chemical, 343: 130139. ‎ ‎[Crossref], [Google Scholar], [Publisher]
  33. Xu LD, Zhu J, Ding SN. (2021). Immunoassay of SARS-CoV-2 nucleocapsid proteins using novel red emission-enhanced carbon dot-based silica spheres. Analyst, 146(16): 5055-5060. [Crossref], [Google Scholar], [Publisher]
  34. Wang C, Wang C, Qiu J, Gao J, Liu H, Zhang Y, Han L. (2021). Ultrasensitive, high-throughput, and rapid simultaneous detection of SARS-CoV-2 antigens and IgG/IgM antibodies within 10 min through an immunoassay biochip. Microchimica Acta, 188(8): 1-15. [Crossref], [Google Scholar], [Publisher]
  35. Wang C, Shi D, Wan N, Yang X, Liu H, Gao H, ... & Wang S. (2021). Development of spike protein-based fluorescence lateral flow assay for the simultaneous detection of SARS-CoV-2 specific IgM and IgG. Analyst, 146(12): 3908-3917. [Crossref], [Google Scholar], [Publisher]
  36. Rai M, Bonde S, Yadav A, Plekhanova Y, Reshetilov A, Gupta I, ... & Ingle AP. (2020). Nanotechnology-based promising strategies for the management of COVID-19: current development and Expert Review of Anti-infective Therapy, 1-10. [Crossref], [Google Scholar], [Publisher]
  37. Zhdanov VP. (2019). Formation of a protein corona around nanoparticles. Current Opinion in Colloid & Interface Science, 41: 95-103. [Crossref], [Google Scholar], [Publisher]
  38. Lane LA, Qian X, Smith AM, Nie S. (2015). Physical chemistry of nanomedicine: understanding the complex behaviors of nanoparticles in vivo. Annual review of physical chemistry, 66: 521-547. [Crossref], [Google Scholar], [Publisher]
  39. Delehanty JB, Mattoussi H, Medintz IL. (2009). Delivering quantum dots into cells: strategies, progress and remaining issues. Analytical and bioanalytical chemistry, 393(4): 1091-1105. [Crossref], [Google Scholar], [Publisher]