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INTRODUCTION 
 
It is always assumed in fracture mechanics that each piece 
has some flaw and small cracks. In fact, since no 
phenomenon in nature is ideal, this assumption can always 
be true and the used equations in strength of materials can 
be replaced with equations of fracture mechanics. In this 
way, the stress intensity factor can be considered as a basis 
criterion for analysis in both real and critical state. 
Because of the body weight and daily activities such as 
sitting, standing, walking, etc, forces and moments will be 
applied to all vertebras of spine. Lumbar spine as a strong 
support always plays an important role in tolerating daily 
life pressures, such as static and dynamic activities. These 
activities can be a little impact due to sliding, running, or 
sudden lifting a heavy weight. So regardless of the disc 
hernia ion or swelling, fracture in vertebrae due to 

unwanted cracks should also be taken into consideration. 
Nowadays with progression of technology, laboratories 
and experimental stations in field of Biomechanics, try to 
produce exact and nearly true models for simulating 
behaviors and analyzing forces acting on human body parts 
such as the sensitive part of lumbar spine. This section 
consists of five vertebrae, inter vertebral discs, muscles, 
etc., which are connected to thoracic spine from the top 
side and to sacrum from the bottom side. Recognizing the 
critical failure position can be performed clinically or 
experimentally that this is the approach of orthopedic 
specialists, But another way to distinguish the critical 
failure position, is analytical and engineering approach that 
has more variety and lower cost than the previous method. 
Finite element analysis is one of the most advanced 
simulation techniques and has been used in orthopedic 
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Objective: In this paper, finite element model of the L4 vertebra subjected to 
combination of compression and flexion loading in isotropic and anisotropic cases is 
investigated. Methods: In both cases, the vertebra is considered homogeneous. Also, 
the body of vertebra is divided to cancellous and cortical sections in anisotropic 
model, but the process is assumed isotropic such as isotropic model. The maximum 
Von Mises stress on the fourth lumbar vertebrae is obtained. Also, the stress intensity 
factor is analyzed with placing a small crack on the critical region of the model from 
view point of fracture mechanics. Furthermore, the required force for the fracture of 
fourth lumbar vertebrae is obtained through increasing the applied force for 
assumed model. Results: The results show that the highest stress value and its 
position is 7.237MPa in the upper pedicle region for anisotropic property of 
vertebrae. At the end of this article, stress intensity factors in different aspect ratios 
of crack for anisotropic vertebrae under combination of flexion and compression 
loading are plotted. 
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biomechanics for many decades (Kayabasi and Ekici 2008). 
Up to now, many finite element (FE) simulations both in 
vivo and in vitro studies have been conducted for 
biomechanical analysis of the lumbar spine (Kuo et al., 
2010). They can also be successfully applied for the 
simulation of biomechanical systems (Odin et al., 2010). FE 
methods have become an important tool to evaluate 
mechanical stresses and strains in bone (Hernandez et al., 
2001) and have been widely used to investigate the 
mechanical behavior of bone tissue (Herrera et al., 2007). 
Finite element analysis of the three-dimensional model of 
the forth vertebrae was developed to clarify the mechanical 
causes of low back pain. The stresses in a modeled lumbar 
structure were then analyzed as solid cortical bone, as a 
hollow shell of cortical bone and with its inner cancellous 
bone structure. 
In all cases, material properties have been supposed as 
isotropic. The results show large stress concentrations 
were found in the superior and inferior facet region and on 
the central surfaces of the vertebral body. Higher stress 
concentrations were also found in the cortical shell of the 
vertebrae (Nabhani and Wake, 2002). 
Zulkifli and Ariffin (2012) have studied lumbar vertebrae 
under compression load with isotropic properties. They 
have been obtained the maximum stress at the upper 
region of the pedicle with value of 4.5 MPa. Also the value 
of stress intensity factor was obtained 0.525MPa√m at 
their research, and the fracture toughness has been 
presented 1.46MPa√m. Various values of Kc and Gc for 
bone has been found from different orientations and 
sizing conditions (Isaac and Graham, 2011). 
In this study fourth lumbar vertebra with regard to 
statically activities is investigated. For simplicity, the effect 
of inter vertebral disc, another lumbar vertebras, muscles 
and ligaments are not included. The purpose of this paper 
is to determine the maximum Von Mises stress and stress 
intensity factor (SIF) and the required force for fracture of 
the fourth lumbar vertebra due to the combined loading in 
two cases. In the first case, material properties of vertebrae 
are supposed as isotropic and in the other case, true model 

of the vertebrae is considered as the different anisotropic 
properties for the cortical and cancellous and isotropic 
property for the process. Also using finite element analysis, 
stress distribution and the stress intensity factors have 
been studied in two cases at the fourth lumbar vertebrae, 
under combination of flexion and compression loads, i.e. 
isotropic and anisotropic properties for vertebrae 
materials. In all states of body position, these two kinds of 
loading are always applied to the lumbar spine. Because if 
we consider the weight of the trunk, we should not forget 
the moment caused by the body's gravity center. The 
gravity center of the body lies in the mid-sagittal plane (due 
to anatomic symmetry) and somehow upside the sacral 
spine. It is reported to be 4 cm in front of the first sacral 
vertebra in the standing anatomic position (White and 
Panjabi, 1990). Results of a survey showed that the pedicle 
is a critical region (Nabhani and Wake, 2002). So, we put 
the considered crack in this region (Zulkifli and Ariffin, 
2012). 
Certainly, current study contributes to orthopedic 
specialists in the detecting failing potential region in fourth 
lumbar vertebrae with an analytical and engineering point 
of view. 
 

2. MATERIALS AND METHODS 

A vertebra is composed of six components which are: 
vertebral body, spinous process, transverse process, 
lamina, pedicle, and facet joints. Point cloud model of 
vertebra has been provided from biomechanics 
department of BRNO University. Then, the three 
dimensional model of vertebrae was constructed in Catia 
and Inventor software’s and was imported by Abaqus 
6.12 software for the analysis. Figure 1 shows the 
anatomy of the fourth lumbar vertebrae. The vertebrae's 
body has two layers, consist of cortical and cancellous 
bone, and each of these two sections have different 
properties. In fact, the surface of the lumbar vertebra is 
not smooth. 

 

 

Figure 1: 
Anatomy of the fourth lumbar vertebrae 

 
 
2.1. Loading and boundary conditions 
 
 

 
To evaluate the effect of the compression condition, a 
simple compressive loading is applied to the vertebral 
model. At first, to obtain the critical region of the fourth 
lumbar vertebrae, a force of 578 N including head weight, 
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trunk weight, arms weight and a box weight that, person 
picks it up, was applied to the lumbar vertebrae. 
According to Figure 2, we can determine pressure and 
moments which have been exerted on vertebrae by 
weight of the box, head, trunk, hands, and calculating the 

distance between each of them from the vertebra (Kurtz 
and Edidin, 2006). 
 
 
 
 

 

Figure 2: 
View of forces and the distances from each part to L4 (Kurtz and Edidin, 2006) 

 

Table 1 shows the weight of each segment and its 
distance from the vertebrae. The load is divided to 70% 
on the upper vertebral body and 30% on the facets joint 
(Ahmad and Arifin, 2010). 

 
 

 
 
 

Table 1: 

(N) weight  58 
 

Head 
 

 (cm) distance  25 

 (N) weight  328 
 

Trunk 

 (cm) distance  10 

 (N)   weight  81 
 

Arms 

 (cm) distance  20 

 (N) weight  111 
 

Box 

 (cm) distance  40 

 

Also, 70% of load bearing surface has been assigned to 
the body and 30% to the facet joints and the loading 
conditions is assumed uniform. For considering the 
flexion effects, a concentrated moment of 108 N.m is 
applied to reference point which is located on the 
geometric center of the upper part of the vertebral body 
by kinematic coupling (Weisse et al., 2012). For applying 
the boundary conditions, the lower vertebral body is fully 
constrained in all degrees of freedom (Ahmad and Arifin, 

2010). Figure 3 shows applied loads and boundary 
conditions. Areas which are measured in Catia software 
have been presented in Table 2. 
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Table 2: 

Area of surfaces on body and facet joints 
 

1284.7 (mm2) Body 
248 (mm2) Facet joints 

 

 

 

Figure 3: 
View of the loading and boundary conditions 

 
2.2. Mechanical properties 
Human vertebra is a non-linear, inhomogeneous and 
anisotropic material and varies in the boundary regions 
between cortical and cancellous bone (Xia et al., 2006). In 
this paper, for loading conditions, two cases are 
considered by using the finite element analysis. In the 
first case, for simplicity, the vertebra is considered as 
isotropic material and in the second case; true material 

properties of vertebrae are considered. For applying 
appropriate material properties to different parts of 
vertebrae, the vertebra has been separated from 
pedicles. Thus, we can choose each part of vertebrae as a 
separate cell. Assigned properties to the fourth lumbar 
vertebrae in the two cases are presented in tables 3 and 4 
(Chena et al., 2009). 

 

Table 3: 
Material properties of isotropic vertebrae (Ahmad and Arifin, 2010) 

12 (GPa)E 

0.3 ν 

 
Table 4: 

Material properties of anisotropic vertebrae (Chena et al., 2009) 
 cortical cancellous process 
Ex (MPa) 11300 140 E (MPa) υ 
Ey (MPa) 22000 200 3500 0.25 
Ez (MPa) 11300 140  
Gx(MPa) 5400 48.3  
Gy (MPa) 3800 48.3  
Gz (MPa) 5400 48.3  
υxy 0.203 0.315  
υyz 0.484 0.315  
υxz 0.203   

 
2.3. Applying finite element mesh to the model 
Applying the finite element mesh to the geometry, the 
vertebra is divided into a grid of elements which form the 
finite element model. Once the finite element model has 

been created, the next step is to identify the type of 
element that will be used for meshing various partitioned 
volumes. The model can use more than one element type. 
Generally, the simplest element type should be used for 
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modeling the problem. In this study, it was decided to use 
three-dimensional, solid, linear, tetrahedral elements for 
all parts. This decision was based on the complexity of 
model shape and this type of element was able to give a 

good accurate rendition of the surface geometry. Also, 
the approximate size of each element has been altered to 
get an optimum converge in a specific stress value. 

 
 
4. Results and Discussion 

As previously mentioned, in this study, critical region of 
vertebra, in conjunction with the value of Von Mises 
stress and stress intensity factor were found, unlike 
other papers. At continuing this discussion, the results 
and the relating points will express in two models of 
anisotropic and isotropic. Figure 4 shows the stress 
distribution of the fourth lumbar spine for evaluating the 
Combination of compression and flexion forces in 

anisotropic case. It was found that the highest stress 
concentration points were at the upper pedicle region, 
with Von Mises stress value 7.237 MPa. So, this area is a 
critical region of the fourth lumbar vertebrae. 
 
 

 

 
Figure 4. 
Von Mises stress distribution in anisotropic vertebrae under combination of flexion and compression loadings (in un-
cracked model) 

  
As mentioned in the introduction part, due to the 
criticality of the pedicle and opening mode, crack has 
been put at the upper part of the pedicle (Zulkifli and 
Ariffin, 2012). According to the mathematical theory of 
fracture mechanics, the shape of crack growth is an 
ellipse, even though the first shape of crack is not an 

ellipse (Parker, 1981). So the crack has been modeled in 
a shape of ideal half- ellipse, respectively, with 3 and 2 
millimeters in length and width. Fig. 5 shows stress 
distribution and crack opening in isotropic vertebrae 
under flexion and compression forces and the contours 
represent the level of Von Mises stress. 

 
Figure 5: 
Von Mises stress distribution and crack opening in isotropic vertebrae under combination of flexion and compression 
loadings 
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We could see that the highest stress concentrations are at 
the top of the pedicle and around the crack, with Von 
Mises stress value 36.82 MPa. This suggests that pedicle 
is a high potential region for the failure. This critical 
region of the pedicle tends to act as a pivot when another 
load is applied to the facet joints and creates a bending 
effect. A longer distance between the facet joints and the 
vertebral body causes an increase in the bending 
moment, and also a stress concentration region. The 
value of stress intensity factor (KI) at deepest point of 
crack is 0.261469MPa√m. It should be noted that the 
number of contours around the crack tip is considered 5. 

Figure 6 shows Von Mises stress distribution and crack 
opening in anisotropic vertebrae under combination of 
flexion and compression forces. It is found that like the 
pervious case, the highest stress concentration is at the 
upper pedicle region, but with Von Mises stress value of 
34.89 MPa. The value of stress intensity factor (KI) at 
deepest point of the crack is 0.304445MPa√m. 
 
 
 
 
 
 

 
Figure 6: 

Von Mises stress distribution and crack opening in anisotropic vertebrae under combination of flexion and compression 
loadings 

 
For obtaining the required force for the fracture of 
lumbar vertebrae, we increased the value of applied force 
and then computed the corresponding stress intensity 
factors and compared them with the reported fracture 
toughness by literatures and a force of 2250 N obtained 
as a critical force. 

Figure 7 shows the stress distribution of the fourth 
lumbar vertebrae under the mentioned load. It's been 
found that similar to previous cases, the highest stress 
concentration is around the crack, but with Von Mises 
stress value of 163.8 MPa. 

 
Figure 7: 

Von Mises stress distribution in anisotropic vertebrae under a load of 2250N 
 

 
In Fig. 8, the crack opening is visible. The value of stress 
intensity factor (KI) at deepest point of crack is 
1.4296MPa√m. 
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Figure 8: 

Crack opening in anisotropic vertebrae under a load of 2250N 
 
 
 
It is important that real properties and actual loading 
conditions have been considered for analysis purpose.  
 
We are looking at this subject that whether the crack has 
been extended or not during a static loading. Therefore, 
the stress intensity factor and fracture toughness values 
have been required to compare with each other. In the 
first two cases, cracks are still far from reaching a critical 

stage. But in case with larger load, we’ve been very close 
to the critical region. This fact shows that it must be 
avoided to lift loads with a large amount. 
Table 5 compares these mentioned cases in summary. 
Stress intensity factor values obtained in the first two 
cases show that the vertebrae tolerated under applied 
load, because the stress intensity factor values is lower 
than fracture toughness. Table 6 shows fracture 
toughness limits Kc and the thicknesses used for the 
biomechanical testing of the some specimens. 

 
Table 5: 

Summary of stress and stress intensity factor values 
 

maximum stress stress intensity factor  
36.82  (MPa) 0.261469 

(MPa√m) 

isotropic with a load of 111N 

34.89  (MPa) 0.304445 
(MPa√m) 

anisotropic with a load of 111N 

163.8  (MPa) 1.4296 
(MPa√m) 

anisotropic with a load of 2250N 

 
 

Table 6: 
Summary of Fracture toughness limits Kc and the thicknesses used for the biomechanical testing of the specimens (Isaac 

and Graham, 2011) 
 

Study Direction Thickness (mm) 
Kc MPa m   

Norman et al., 1994 Longitudinal 2 4.69 ± .65 

Longitudinal 3 4.48 ± .89 
Bonfield et al., 1978 Longitudinal 1.5 2.1 - 4.7 

 

According to the above discussion, two cases arise for 
rupturing: the length of crack should be larger with same 
load value, or a bigger load is needed for failing with 
same size of crack. Actually, when value of SIF reach to 
value of fracture toughness, the vertebra will fail and the 
crack will spread in critical region. This is what leads to 
the movement modification. After the crack detection by 
X-ray photos, Orthopedics specialists based on amount 

damage, prescribe instructions to help to modify daily 
actions and prevent increasing damage. Also, Figure 9 
shows stress intensity factors in some aspect ratio of 
crack under second loading case (flexion and 
compression loadings) for anisotropic vertebra. It's been 
observed that with increasing aspect ratio (a∕ b), the stress 
intensity factor increases. 
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Figure 9: 

 Stress intensity factors in some aspect ratio of crack for anisotropic vertebrae under combination of flexion and 
compression loadings. (a=crack length, b=crack depth) 

 

 
3. Conclusion 
 
This paper has studied the use of the finite element 
model to determine the maximum stress and stress 
intensity factor and the required force for the fracture of 
fourth lumbar vertebrae under combination of 
compression and flexion forces in isotropic and 
anisotropic cases, regardless of inter vertebral discs, 

muscles and other vertebras. The results indicated that 
the maximum Von Mises stress value was in anisotropic 
case and at the upper pedicle region, with Von Mises 
stress value of 7.237 MPa. Hence, placed assumed crack 
on this region and computed corresponding value of SIF. 
Also, according to above condition, it was observed that 
the value of stress intensity factor in this region was 
0.304445MPa√m.
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