Document Type : Original Article

Authors

Department of Chemistry, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran

Abstract

ABSTRACT. Silver nanoparticles (AgNPs) with antimicrobial and anticancer properties have been widely used in a variety of fields. This research investigated the antimicrobial effects and toxicity of AgNPs synthesized using the extract of the medicinal plant lemon balm, Melissa officinalis L., on 3 cancer cell lines (A549, MCF-7, and HeLa). AgNPs were biologically synthesized using the extract of M. officinalis. After physical and chemical evaluation, the anti-bacterial properties of the synthesized nanoparticles were evaluated in Escherichia coli and Staphylococcus aureus. Finally, the inhibitory effect of synthesized nanoparticles was assessed by the MTT assay on 3 cancer cell lines. With an average size of 17 nm, the nanoparticles synthesized by M. officinalis L. extract had a significant inhibitory and lethal effect on 2 bacteria. The findings indicated that the synthesized nanoparticles had more inhibitory and bactericidal effects on S. aureus as a gram-positive bacterial strain. The MBC of nanoparticles synthesized by M. officinalis extract was 500 μg/mL for S. aureus and 700 μg/mL for E. col. At a concentration of 50 g/mL, the synthesized AgNPs showed more than 50% inhibitory effect on different cell lines. Our results demonstrate that medicinal plants can be used in the successful synthesis of biological AgNPs. The synthesized AgNPs can be utilized as effective medicinal agents in the management of several cancers due to their coating made of effective secondary metabolites and the release of silver ions (Ag+).

Graphical Abstract

Evaluation of anti-bacterial (Escherichia coli and Staphylococcus aureus) and anticancer effects of silver nanoparticles synthesized by Melissa officinalis L. extract on several cancer cells (A549, MCF-7, and HeLa)

Keywords

  1.  

    1. Banin U, Waiskopf N, Hammarström L. Boschloo G ,Freitag M, Johansson E M J, Sa J, Tian H, Herz L M. (2020). Nanotechnology for catalysis and solar energy conversion, Nanotechnology, 32(4): 42003-42031. [Google scholar], [Publisher]
    2. Bucolo C, Drago F, Salomone S. (2021). Ocular drug delivery: a clue from nanotechnology. Frontiers in Pharmacology, 3:188. [Crossref], [Google scholar], [Publisher]
    3. Rónavári A, Igaz N, Gopisetty M K, Szerencsés B, Kovács D, Papp C, Vágvölgyi C, Boros I M, Kónya Z, Kiricsi M. (2018). Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes. International Journal of Nanomededicine, 13: 695–703. [Crossref], [Google scholar], [Publisher]
    4. Hong Wong K, Lu A, Xiaoyu Ch, Zhijun Y, 2020. Natural Ingredient-Based Polymeric Nanoparticles for Cancer Treatment. Molecules, 25(16): 3620. [Crossruff], [Google scholar], [Publisher]
    5. Mathur P, Jha R, Ramteke S, Jain N K. (2018). Artificial Cells, Nanomedicine, and Biotechnology, 48: 115-126. [Crossref], [Google scholar], [Publisher]
    6. Iqbal S, Fakher-e-Alam M, Akbar F, Shafiq M, Atif M, Amin N. (2019). Journal of Molecular Structure, 1189: 203. [Crossreff], [Google scholar], [Publisher]
    7. Cheng X. (2014). Nanostructures: fabrication and applications. Nanolithography, 348-375. [Crossref], [Google scholar], [Publisher]
    8. Yin I X, Zhang J, Zhao I, Mei M L, Li Q, Chu C H. (2020). International Journal of Nanomedicine, 15: 2555-2567. [Crossref], [Google scholar], [Publisher]
    9. Qi Z, Xue X, Zhou H, Yuan H, Li W, Yang, G, Wang C. (2022). The aqueous assembly preparation of OPs-AgNPs with phenols from olive mill wastewater and its mechanism on antimicrobial function study. Food Chemistry, 376, 131924. [Crossref], [Google scholar], [Publisher]
    10. Fernando S S N, Gunasekara T D C P, Holton J. (2018). Sri Lankan Journal of Infectious Diseases, 8(1): 2-11. [Crossref], [Google scholar], [Publisher]
    11. Lee S H, Jun B H. (2019). International Journal of Molecular Science, 20: 865-889. [Crossref], [Google scholar], [Publisher]
    12. Liao S, Zhang Y, Pan X, Zhu F, Jiang O, Liu Q. (2019). International Journal of Nanomedicine, 14: 1469–1487. [Crossref], [Google scholar], [Publisher]
    13. Mousavi B, Tafvizi F, Bostanabad S Z. (2018). Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). National Center for Biotechnology Information, 46: 499-510. [Crossref], [Google scholar], [Publisher]
    14. Souihi M, Ayed R B, Trabelsi I, Khammassi M, Brahim N B, Annabi M. (2020). Plant Extract Valorization of Melissa officinalis L. for Agroindustrial Purposes through Their Biochemical Properties and Biological Activities. Journal of Chemistry, 1155-1167. [Crossref], [Google scholar], [Publisher]
    15. Srivente H, Beaumal V, Gaillard C,Bialek L, Hamm D,Anton M. (2007). Structuring and Functionalization of Dispersions Containing Egg Yolk, Plasma and Granules Induced by Mechanical Treatments. Journal of Agriculture and Food Chemistry, 55(23): 9537-9544. [Crossref], [Google scholar], [Publisher]
    16. Sharma D, Kanchi S, Bisetty K. (2015). Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry, 12 : 3576-3600. [Crossref], [Google scholar], [Publisher]
    17. Akhtar M S, Panwar J, Yun Y S. (2013). Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts. ACS Sustainable Chemistry and Engineering, 196: 591-602. [Crossref], [Google scholar], [Publisher]
    18. Pirtarighat S, Ghannadnia M, Baghshahi S. (2017). Antimicrobial effects of green synthesized silver nanoparticles using Melissa officinalis grown under in vitro condition. Nanomedicine Journal, 4(3): 184-190. [Crossref], [Google scholar], [Publisher]
    19. Ruíz-Baltazar A J, Reyes-López S Y, Larrañaga D, Estévez M, Pérez R. (2017). Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties. Results in Physics, 7: 2639-2643. [Crossref], [Google scholar], [Publisher]
    20. Gerlier D, Thomasset N. (1986). Use of MTT colorimetric assay to measure cell activation. Journal of Immunology Methods, 94(1-2): 57-63. [Crossref], [Google scholar], [Publisher]
    21. Nikoobakht B, Wang J, El-Sayed M. (2002). Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: Off-surface plasmon resonance condition. Chemical Physics Letters, 366 (1-2):17-23. [Crossref], [Google scholar], [Publisher]
    22. Bankar A, Joshi B, Kumar A. R, Zinjarde S. (2010). Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Journal of Colloids and Surfaces A: Physicochemical and Engineering Aspects, 368(1-3): 58–63. [Crossref], [Google scholar], [Publisher]
    23. Jannathul Firdhouse M, Lalitha P. (2015). Biosynthesis of Silver Nanoparticles and Its Applications. Journal of Nanotechnology, 1: 1-18. [Crossref], [Google scholar], [Publisher]
    24. Hemlat Meena P R, Singh A P, Tejavath K K. (2020). Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity Against Cancer Cell Lines. ACS Omega, 5(10): 5520-5528. [Crossref], [Google scholar], [Publisher]
    25. Moacă E A, Farcaş C, Ghiţu A, Coricovac D, Popovici R, Cărăba-Meiţă N L, Ardelean F, Simona Antal D, Dehelean C, Avram Ş. (2018). A Comparative Study of Melissa officinalis Leaves and Stems Ethanolic Extracts in terms of Antioxidant, Cytotoxic, and Antiproliferative Potential. Evidence-Based Complementary and Alternative Medicine, 1155-1167. [Crossref], [Google scholar], [Publisher]
    26. Pirtarighat S, Ghannadnia M, Baghshahi S. (2017). Antimicrobial effects of green synthesized silver nanoparticles using Melissa officinalis grown under in vitro condition, Nanomedical Journal, 4(3): 184-190. [Crossref], [Google scholar], [Publisher]
    27. Jeong J K, Gurunathan S, Kang M H, Han J W, Das j, Choi Y J, Kwon D N, Cho S J, Park C, Seo H G, Song H,Kim J H. (2016). Hypoxia-mediated autophagic flux inhibits silver nanoparticle-triggered apoptosis in human lungcancer cells Science Reports. Scientific Reports, 6: 21688-21701. [Google scholar], [Publisher]
    28. Raoofi R, Pourahamad M, Nazer M R, Pournia Y, Chinikar S. (2012). Case series of Crimean-Congo disease: An outbreak in south of Fars, Iran. Journal of Babol University of Medical Sciences, 14(5): 96-100. [Google scholar], [Publisher]
    29. Salarvand S, Nazer M R, Shokri S, Bazhvan S, Pournia, Y. (2012). Brucellosis-induced avascular necrosis of the hip in a middle-aged person. Iranian Journal of Public Health, 41(12): 86-88. [Google scholar], [Publisher]
    30. Manouchehri A, Shakib P, Biglaryan F, Nazer M, Darvishi M. (2021).The most important medicinal plants affecting bee stings: A systematic review study. Uludag Aricilik Dergisi, 21(1): 91-103. [Crossref], [Google scholar], [Publisher]
    31. Magbool F, Elnima E.I, Shahyoub M .E, Hamedelniel E, Gamil  M.A,  Adam M.E, Osman Z. (2020). Formulation design, development and evaluation of Quercun infectoria galls extract oral gels for oral candidiasis. Plant Biotechnol Persa, 2(2): 1-13. [Crossref], [Google scholar], [Publisher]
    32. Abbaszadeh S, Andevari A N, Koohpayeh A, Naghdi N, Alizadeh M, Beyranvand F, Harsej Z. (2018). Folklore medicinal plants used in liver disease: A review. Internationa Journal of Green Pharmacy, 12(3): 463-472. [Crossref], [Google scholar], [Publisher]
    33. Bahmani M. (2019). A new method for promoting biologic synthesis and reducing the size of titanium dioxide nanoparticles (Tio2 NPs) synthesized by Origanum vulgare. Plant Biotechnology Persa, 1 (1):10-12. [Crossref], [Google scholar], [Publisher]