Document Type: Review Article

Authors

1 Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran

2 2Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran 3Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Background: There is a worldwide effort to present novel approaches for the development of tolerance-induction treatments in regenerative medicine, after years of investigation in clinical transplantation. Particularly, novel approaches are based on controlling the immune response, including the application of biomaterials or imitation of antigen-specific peripheral tolerance in either solid-organ or allogeneic hematopoietic stem cell transplantation (HSCT).
Methods: New biomaterials have been designed to alter the cell behavior in tissue-engineered creatures and also suppressing immune responses against cells and biomaterial scaffolds. Blunting immune responses has been evidenced to be a wise strategy in regenerative medicine. Incorporation of stem cell biologists, material scientists, and transplantation immunologists can lead to the most innovative solutions.
Results: Replacing damaged tissues is the main goal of regenerative medicine. To reach this goal, it is vital to have a comprehensive understanding of the whole regeneration process; for example, the mechanisms of dedifferentiation of cells to progenitor cells or trans-differentiation into another cell types, and rescheduling of somatic cells to pluripotent cells.
Conclusions: Exploring the regenerative processes under in vitro and in vivo situations sheds lights on the underlying molecular and cellular mechanisms and thereby helps to pave the way toward describing novel regenerative strategies to combat human diseases and finally to strengthen the regenerative medicine.

Keywords

Main Subjects

Almeida-Porada, G, Porada, CD, Tran, N, Zanjani, ED. (2000). Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood, 95(11):3620-3627. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10828053.

Alsousou, J, Harrison, P. (2017). Platelet-rich plasma in regenerative medicine. In Platelets in Thrombotic and Non-Thrombotic Disorders (pp. 1403-1416): Springer.

Ancans, J. (2012). Cell therapy medicinal product regulatory framework in Europe and its application for MSC-based therapy development. Frontiers in immunology, 3.

Aurora, AB, Olson, EN. (2014). Immune modulation of stem cells and regeneration. Cell Stem Cell, 15(1):14-25. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24996166. doi:10.1016/j.stem.2014.06.009

Barberi, T, Klivenyi, P, Calingasan, NY, Lee, H, Kawamata, H, Loonam, K, Perrier, AL, Bruses, J, Rubio, ME, Topf, N, Tabar, V, Harrison, NL, Beal, MF, Moore, MAS, Studer L. (2003). Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol., 21(10):1200-1207. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14502203. doi:10.1038/nbt870

Bartel, DP. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281-297. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14744438.

Behfar, A, Crespo-Diaz, R, Terzic, A, Gersh, BJ. (2014). Cell therapy for cardiac repair--lessons from clinical trials. Nat. Rev. Cardiol., 11(4):232-246. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24594893. doi:10.1038/nrcardio.2014.9

Bellan, LM, Pearsall, M, Cropek, DM, Langer, R. (2012). A 3D interconnected microchannel network formed in gelatin by sacrificial shellac microfibers. Adv. Mater., 24(38):5187-5191.

Brockes, JP, Kumar, A. (2008). Comparative aspects of animal regeneration. Annu. Rev. Cell Dev. Biol., 24:525-549. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18598212. doi:10.1146/annurev.cellbio.24.110707.175336

Bryder, D, Rossi, DJ, Weissman, IL. (2006). Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am. J. Pathol., 169(2):338-346.

Buttafoco, L, Kolkman, N, Poot, A, Dijkstra, P, Vermes, I, Feijen, J. (2005). Electrospinning collagen and elastin for tissue engineering small diameter blood vessels. J. Control Release, 101(1-3):322.

Cermelli, S, Ruggieri, A, Marrero, JA, Ioannou, GN, Beretta, L. (2011). Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PloS one, 6(8):e23937. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21886843. doi:10.1371/journal.pone.0023937

Chang, TC, Mendell, JT. (2007). microRNAs in vertebrate physiology and human disease. Annu. Rev. Genomics Hum. Genet., 8:215-239. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17506656. doi:10.1146/annurev.genom.8.080706.092351

Chen, GY, Nunez, G. (2010). Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol., 10(12):826-837. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21088683. doi:10.1038/nri2873

Chirba, MA, Noble, A. (2013). Our Bodies, Our Cells: FDA Regulation of Autologous Adult Stem Cell Therapies. Bill of Health.

Choi, YS, Park, SN, Suh, H. (2005). Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres. Biomaterials, 26(29):5855-5863. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15949551. doi:10.1016/j.biomaterials.2005.02.022

Coffman, JA, Rieger, S, Rogers, AN, Updike, DL, Yin, VP. (2016). Comparative biology of tissue repair, regeneration and aging. Npj Regenerat. Med., 1:16003.

De Ugarte, DA, Morizono, K, Elbarbary, A, Alfonso, Z, Zuk, PA, Zhu, M, Dragoo, JL, Ashjian, P, Thomas, B, Benhaim, P, Chen, I, Fraser, J, Hedrick, MH. (2003). Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cell. Tissu. Org., 174(3):101-109. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12835573. doi:71150

De Waele, J, Reekmans, K, Daans, J, Goossens, H, Berneman, Z, Ponsaerts, P. (2015). 3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials, 41:122-131.

Derby, B. (2012). Printing and prototyping of tissues and scaffolds. Science, 338(6109):921-926.

Ezekowitz, JA, Kaul, P, Bakal, JA, Armstrong, PW, Welsh, RC, McAlister, FA. (2009). Declining in-hospital mortality and increasing heart failure incidence in elderly patients with first myocardial infarction. J. Am. Coll. Cardiol., 53(1):13-20. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19118718. doi:10.1016/j.jacc.2008.08.067

Forbes, SJ, Rosenthal, N. (2014). Preparing the ground for tissue regeneration: from mechanism to therapy. Nat. Med., 20(8):857-869. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25100531. doi:10.1038/nm.3653

Freeman, I, Kedem, A, Cohen, S. (2008). The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials, 29(22):3260-3268.

Fukumoto, T, Sperling, JW, Sanyal, A, Fitzsimmons, JS, Reinholz, GG, Conover, CA, O'Driscoll, SW. (2003). Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthrit. Cartil., 11(1):55-64. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12505488.

Gerczuk, PZ, Kloner, RA. (2012). An update on cardioprotection: a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. J. Am. Coll. Cardiol., 59(11):969-978. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22402067. doi:10.1016/j.jacc.2011.07.054

Godwin, JW, Pinto, AR, Rosenthal, NA. (2013). Macrophages are required for adult salamander limb regeneration. Proc. Natl. Acad Sci. U S A, 110(23):9415-9420. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23690624. doi:10.1073/pnas.1300290110

Gori, M, Arciello, M, Balsano, C. (2014). MicroRNAs in nonalcoholic fatty liver disease: novel biomarkers and prognostic tools during the transition from steatosis to hepatocarcinoma. BioMed Res. Int., 2014:741465.

Goshima, J, Goldberg, VM, Caplan, AI. (1991). The origin of bone formed in composite grafts of porous calcium phosphate ceramic loaded with marrow cells. Clin. Orthop. Relat. Res., (269):274-283. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1650657.

Grayson, WL, Bunnell, BA, Martin, E, Frazier, T, Hung, BP, Gimble, JM. (2015). Stromal cells and stem cells in clinical bone regeneration. Nat. Rev. Endocrinol., 11(3):140-150. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25560703. doi:10.1038/nrendo.2014.234

Greiner, A, Wendorff, JH. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Edit., 46(30):5670-5703.

Gusev, Y. (2008). Computational methods for analysis of cellular functions and pathways collectively targeted by differentially expressed microRNA. Methods, 44(1):61-72. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18158134. doi:10.1016/j.ymeth.2007.10.005

Hardy, CL. (1995). The homing of hematopoietic stem cells to the bone marrow. Am. J. Med. Sci., 309(5):260-266. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7733141.

Harris, A, Seckl, J. (2011). Glucocorticoids, prenatal stress and the programming of disease. Horm Behav., 59(3):279-289. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20591431. doi:10.1016/j.yhbeh.2010.06.007

Harris, JM. (2013). Poly (ethylene glycol) chemistry: biotechnical and biomedical applications: Springer Science & Business Media.

Haseltine, WA. (2003). Regenerative medicine: a future healing art. Brook. Rev., 21(1):38-44.

Horowitz, MM. (2004). Uses and growth of hematopoietic cell transplantation. Thomas’ hematopoietic cell transplantation, P: 15-21.

Hubbell, JA. (2003). Materials as morphogenetic guides in tissue engineering. Curr. Opin. Biotechnol., 14(5):551-558.

Jiang, Y, Chen, J, Deng, C, Suuronen, EJ, Zhong, Z. (2014). Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials, 35(18):4969-4985. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24674460. doi:10.1016/j.biomaterials.2014.03.001

Jones, E, Yang, X. (2011). Mesenchymal stem cells and bone regeneration: current status. Injury, 42(6):562-568. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21489533. doi:10.1016/j.injury.2011.03.030

Khulan, B, Drake, AJ. (2012). Glucocorticoids as mediators of developmental programming effects. Best Pract. Res. Clin. Endocrinol. Metabol., 26(5):689-700.

Kim, VN, Nam, JW. (2006). Genomics of microRNA. Trend. Genet, 22(3):165-173. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16446010. doi:10.1016/j.tig.2006.01.003

Kimbrel, EA, Lanza, R. (2015). Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat. Rev. Drug Discov., 14(10):681-92.

Knoepfler, PS. (2013a). Call for fellowship programs in stem cell-based regenerative and cellular medicine: new stem cell training is essential for physicians. Regenerat. Med., 8(2):223-225.

Knoepfler, PS. (2013b). Key action items for the stem cell field: looking ahead to 2014. Stem Cell. Develop., 22(S1):10-12.

Koc, ON, Gerson, SL, Cooper, BW, Dyhouse, SM, Haynesworth, SE, Caplan, AI, Lazarus, HM. (2000). Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J. Clin. Oncol., 18(2), 307-316. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10637244. doi:10.1200/JCO.2000.18.2.307

Kolesky, DB, Truby, RL, Gladman, A, Busbee, TA, Homan, KA, Lewis, JA. (2014). Bioprinting: 3D Bioprinting of Vascularized, Heterogeneous Cell‐Laden Tissue Constructs. Adv. Mater., 26(19):2966-2966.

Lau, HK, Kiick, KL. (2014). Opportunities for multicomponent hybrid hydrogels in biomedical applications. Biomacromolecules, 16(1):28-42.

Liu, N, Williams, AH, Maxeiner, JM, Bezprozvannaya, S, Shelton, JM, Richardson, JA, Bassel-Duby, R, Olson, EN. (2012). microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J. Clin. Invest., 122(6):2054-2065. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22546853. doi:10.1172/JCI62656

Lucendo-Villarin, B, Filis, P, Swortwood, MJ, Huestis, MA, Meseguer-Ripolles, J, Cameron, K, Iredale,  JP, O'Shaughnessy, PJ, Fowler, PA, Hay, DC. (2017). Modelling foetal exposure to maternal smoking using hepatoblasts from pluripotent stem cells. Arch Toxicol., 91(11):3633-3643. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/28510779. doi:10.1007/s00204-017-1983-0

Mahoney, MJ, Anseth, KS. (2006). Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials, 27(10):2265-2274.

Manoukian, OS, Matta, R, Letendre, J, Collins, P, Mazzocca, AD, Kumbar, SG. (2017). Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues. Biomed. Nanotechnol. Method. Protocol., 1570:261-278.

Martín, PG, Martinez, AR, Lara, VG, Naveros, BC. (2014). Regulatory considerations in production of a cell therapy medicinal product in Europe to clinical research. Clin. Experimen. Med., 14(1):25-33.

Mikos, AG, Herring, SW, Ochareon, P, Elisseeff, J, Lu, HH, Kandel, R, Schoen, FJ, Toner, M, Mooney, D, Atala, A, Van Dyke, ME, Kaplan, D, Atala, A. (2006). Engineering complex tissues. Tissue Eng., 12(12):3307-3339.

Miura, M, Gronthos, S, Zhao, M, Lu, B, Fisher, LW, Robey, PG, Shi, S. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad Sci. U S A, 100(10):5807-5812. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12716973. doi:10.1073/pnas.0937635100

Motohashi, N, Alexander, MS, Shimizu-Motohashi, Y, Myers, JA, Kawahara, G, Kunkel, LM. (2013). Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. J. Cell. Sci., 126(Pt 12):2678-2691. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23606743. doi:10.1242/jcs.119966

Murata, K, Yoshitomi, H, Tanida, S, Ishikawa, M, Nishitani, K, Ito, H, Nakamura, T. (2010). Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthr. Res. Therapy, 12(3):R86.

Neubauer, M, Hacker, M, Bauer-Kreisel, P, Weiser, B, Fischbach, C, Schulz, MB, Goepferich, A, Blunk, T. (2005). Adipose tissue engineering based on mesenchymal stem cells and basic fibroblast growth factor in vitro. Tissue Eng., 11(11-12):1840-1851. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16411830. doi:10.1089/ten.2005.11.1840

Nichol, JW, Khademhosseini, A. (2009). Modular tissue engineering: engineering biological tissues from the bottom up. Soft mat., 5(7):1312-1319.

Nöth, U, Osyczka, AM, Tuli, R, Hickok, NJ, Danielson, KG, Tuan, RS. (2002). Multilineage mesenchymal differentiation potential of human trabecular bone‐derived cells. J. Orthop. Res., 20(5):1060-1069.

O'Driscoll, SW, Saris, DB, Ito, Y, Fitzimmons, JS. (2001). The chondrogenic potential of periosteum decreases with age. J. Orthop. Res., 19(1):95-103. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11332626. doi:10.1016/S0736-0266(00)00014-0

Olena, AF, Patton, JG. (2010). Genomic organization of microRNAs. J. Cell. Physiol., 222(3):540-545. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20020507. doi:10.1002/jcp.21993

Ostrovidov, S, Shi, X, Zhang, L, Liang, X, Kim, SB, Fujie, T, Ramalingam, M, Chena, M, Nakajim, K, Al-Hazmi, F, Bae, H, Memic, A, Al-Hazmi, F. (2014). Myotube formation on gelatin nanofibers–multi-walled carbon nanotubes hybrid scaffolds. Biomaterials, 35(24):6268-6277.

Rao, MS, Mattson, MP. (2001). Stem cells and aging: expanding the possibilities. Mech. Ageing Dev., 122(7):713-734. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11322994.

Richards, M, Huibregtse, BA, Caplan, AI, Goulet, JA, Goldstein, SA. (1999). Marrow-derived progenitor cell injections enhance new bone formation during distraction. J. Orthop. Res., 17(6):900-908. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10632457. doi:10.1002/jor.1100170615

Sadri-Ardekani, H, Atala, A. (2015). Regenerative medicine for the treatment of reproductive system disorders: current and potential options. Adv. Drug Deliver. Rev., 82:145-152.

Sanchez Alvarado, A. (2000). Regeneration in the metazoans: why does it happen? Bioessays, 22(6):578-590. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10842312. doi:10.1002/(SICI)1521-1878(200006)22:63.0.CO;2-#

Selimović, Š, Oh, J, Bae, H, Dokmeci, M, Khademhosseini, A. (2012). Microscale strategies for generating cell-encapsulating hydrogels. Polymers, 4(3):1554-1579.

Setiawan, A, Yin, L, Auer, G, Czene, K, Smedby, KE, Pawitan, Y. (2017). Patterns of acute inflammatory symptoms prior to cancer diagnosis. Scientific Rep., (Nature Publisher Group), 7, 1.

Sheridan, M, Shea, L, Peters, M, Mooney, D. (2000). Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J. Controll. Rel., 64(1):91-102.

Tabeling, P. (2005). Introduction to microfluidics: Oxford University Press on Demand.

Trofin, EA, Monsarrat, P, Kemoun, P. (2013). Cell therapy of periodontium: from animal to human? Front Physiol., 4:325. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24298258. doi:10.3389/fphys.2013.00325

Tuli, R, Seghatoleslami, MR, Tuli, S, Wang, ML, Hozack, WJ, Manner, PA, Danielson, KG, Tuan, RS. (2003). A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone. Mol. biotechnol., 23(1):37-49.

Vermonden, T, Censi, R, Hennink, WE. (2012). Hydrogels for protein delivery. Chem. Rev., 112(5):2853-2888. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22360637. doi:10.1021/cr200157d

Walters, NJ, Gentleman, E. (2015). Evolving insights in cell–matrix interactions: Elucidating how non-soluble properties of the extracellular niche direct stem cell fate. Acta Biomater., 11:3-16.

Wang, LS, Lee, F, Lim, J, Du, C, Wan, AC, Lee, SS, Kurisawa, M. (2014). Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid–tyramine hydrogel system to promote the formation of functional vasculature. Acta Biomater., 10(6):2539-2550.

Wickham, MQ, Erickson, GR, Gimble, JM, Vail, TP, Guilak, F. (2003). Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin. Orthop. Relat. Res., (412):196-212. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12838072. doi:10.1097/01.blo.0000072467.53786.ca

Wu, L, Yuan, X, Sheng, J. (2005). Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J. Membr. Sci., 250(1):167-173.

Yuan, BZ, Wang, J. (2014). The regulatory sciences for stem cell-based medicinal products. Frontier. Med., 8(2):190-200.

Zahedi, P, Rezaeian, I, Ranaei‐Siadat, SO, Jafari, SH, Supaphol, P. (2010). A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym. Adv. Technol., 21(2):77-95.

Zakrzewski, JL, Van Den Brink, MR, Hubbell, JA. (2014). Overcoming immunological barriers in regenerative medicine. Nat. Biotechnol., 32(8):786-794.

Zheng, Y, Chen, J, Craven, M, Choi, NW, Totorica, S, Diaz-Santana, A, Kermani, P, Hempstead, B, Fischbach-Teschl, C, López, JA, Stroock, AD. (2012). In vitro microvessels for the study of angiogenesis and thrombosis. Proceed. Nat. Academ. Sci., 109(24):9342-9347.

Zhou, J, Ju, W, Wang, D, Wu, L, Zhu, X, Guo, Z, He, X. (2012). Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration. PloS one, 7(4):e33577.

Zhu, J. (2010). Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials, 31(17):4639-4656. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20303169. doi:10.1016/j.biomaterials.2010.02.044