Document Type : Review Article

Author

Divine College of Pharmacy Satana Dist. Nashik, Maharastra, India

Abstract

It was shown that several bioactive aromatic compounds with biological applications have the furan nucleus watch Numerous significant synthetic compounds include furan scaffold, which offers a helpful therapeutic idea and is found to have strong affinity for a range of receptors, assisting in the synthesis of novel, advantageous derivatives The antibacterial, antifungal, antiviral, anti-inflammatory, analgesic, antidepressant, antianxiolytic, anti-Parkinson, anti-glaucoma, muscle-relaxant, antihypertensive, diuretics, anti-ulcer, anti-aging, and anti-cancer effects of furan derivatives make them frequently utilized. Diverse furan derivatives have piqued the interest of researchers. Furan is a colourless liquid that boils almost at ambient temperature and is highly volatile and combustible. Electron-Rich Nature: Furan rings have the ability to engage in a variety of electrical interactions with biomolecules due to their electron-rich nature. This characteristic might make it easier to attach strongly to biological targets like enzymes or receptors, which would affect how they function. Aromaticity: Furan's aromatic properties may give the compounds stability, which could improve their metabolic stability and bioavailability. Numerous natural compounds and pharmaceutical molecules are known to depend heavily on aromatic systems for their bioactivity.Functional Group Diversity: A wide variety of derivatives can be synthesized by simply modifying furan scaffolds with different functional groups.

Graphical Abstract

Furan: A Promising Scaffold for Biological Activity

Keywords

Main Subjects

OPEN ACCESS

©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

PUBLISHER NOTE

Sami Publishing Company remains neutral concerning jurisdictional claims in published maps and institutional affiliations.

CURRENT PUBLISHER

Sami Publishing Company

 

 

  1. Raczko J, Jurczak J. Furan in the synthesis of natural products. Studies in Natural Products Chemistry. 1995 Jan 1; 16:639-85. [Crossref], [Google Scholar], [Publisher]
  2. Barmade MA, Ghuge RB. Vicinal Diaryl Heterocyclic System: A Privileged Scaffold in the Discovery of Potential Therapeutic Agents. InVicinal Diaryl Substituted Heterocycles 2018 Jan 1 (pp. 1-20). Elsevier. [Crossref], [Google Scholar], [Publisher]
  3. Malladi S, Nadh RV, Babu KS, Babu PS. Synthesis and antibacterial activity studies of 2, 4-di substituted furan derivatives. Beni-Suef University Journal of Basic and Applied Sciences. 2017 Dec 1;6(4):345-53. [Crossref], [Google Scholar], [Publisher]
  4. Schmidt RR. Hetero-Diels-Alder reaction in highly functionalized natural product synthesis. Accounts of Chemical Research. 1986 Aug 1;19(8):250-9. [Crossref], [Google Scholar], [Publisher]
  5. Özdemir Z, Kandilci HB, Gümüşel B, Çalış Ü, Bilgin AA. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. European Journal of Medicinal Chemistry. 2007 Mar 1;42(3):373-9. [Crossref], [Google Scholar], [Publisher].
  6. Kamal M, Shakya AK, Jawaid T. Benzofurans: a new profile of biological activities. Int. J. Med. Pharm. Sci. 2011;1(3):1-5. [Google Scholar], [Publisher]
  7. Alizadeh M, Jalal M, Hamed K, Saber A, Kheirouri S, Pourteymour Fard Tabrizi F, Kamari N. Recent updates on anti-inflammatory and antimicrobial effects of furan natural derivatives. Journal of Inflammation Research. 2020 Aug 19:451-63. [Crossref], [Google Scholar], [Publisher]
  8. Karipcin F, Atis M, Sariboga B, Celik H, Tas M. Structural, spectral, optical and antimicrobial properties of synthesized 1-benzoyl-3-furan-2-ylmethyl-thiourea. Journal of Molecular Structure. 2013 Sep 24; 1048:69-77. [Crossref], [Google Scholar], [Publisher]
  9. Gevrek TN, Sanyal A. Furan-containing polymeric Materials: Harnessing the Diels-Alder chemistry for biomedical applications. European Polymer Journal. 2021 Jun 15;153:110514. [Crossref], [Google Scholar], [Publisher]
  10. Rymbai EM, Chakraborty A, Choudhury R, Verma N, De B. Review on chemistry and therapeutic activity of the derivatives of furan and oxazole: the oxygen containing heterocycles. Der Pharma Chemica. 2019;11(1):20-41. [Google Scholar], [PDF]
  11. Chernyshev VM, Kravchenko OA, Ananikov VP. Conversion of plant biomass to furan derivatives and sustainable access to the new generation of polymers, functional materials and fuels. Russian Chemical Reviews. 2017 Jun 1;86(5):357. [Crossref], [Google Scholar], [Publisher]
  12. Chen LJ, DeRose EF, Burka LT. Metabolism of furans in vitro: ipomeanine and 4-ipomeanol. Chemical Research in Toxicology. 2006 Oct 16;19(10):1320-9. [Crossref], [Google Scholar], [Publisher]
  13. Montagnon T, Tofi M, Vassilikogiannakis G. Using singlet oxygen to synthesize polyoxygenated natural products from furans. Accounts of Chemical Research. 2008 Aug 19;41(8):1001-11. [Crossref], [Google Scholar], [Publisher]
  14. Meotti FC, Silva DO, Dos Santos AR, Zeni G, Rocha JB, Nogueira CW. Thiophenes and furans derivatives: a new class of potential pharmacological agents. Environmental Toxicology and Pharmacology. 2003 Dec 1;15(1):37-44. [Crossref], [Google Scholar], [Publisher]
  15. Patel NR, Patel DV. Synthesis and Biological Activities of Vicinal Diaryl Furans. InVicinal Diaryl Substituted Heterocycles 2018 Jan 1 (pp. 221-244). Elsevier. [Crossref], [Google Scholar], [Publisher]
  16. Rani M, Yusuf M, Khan SA, Sahota PP, Pandove G. Synthesis, studies and in-vitro antibacterial activity of N-substituted 5-(furan-2-yl)-phenyl pyrazolines. Arabian Journal of Chemistry. 2015 Mar 1;8(2):174-80. [Crossref], [Google Scholar], [Publisher]
  17. Banerjee R, Kumar HK, Banerjee M. Medicinal significance of furan derivatives: a review. International Journal of Research in Phytochemistry and Pharmacology. 2015 Jun 30;5(3):48-57. [Google Scholar], [Publisher]
  18. Abdulmalik O, Safo MK, Chen Q, Yang J, Brugnara C, Ohene‐Frempong K, Abraham DJ, Asakura T. 5‐hydroxymethyl‐2‐furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. British Journal of Haematology. 2005 Feb;128(4):552-61. [Crossref], [Google Scholar], [Publisher]
  19. Liu X, Yu D, Yang W, Zhang Q, Wu H, Li C. Development of sustainable catalytic pathways for furan derivatives. Frontiers in Chemistry. 2021 Nov 22;9:707908. [Crossref], [Google Scholar], [Publisher]
  20. Kalyaev MV, Ryabukhin DS, Borisova MA, Ivanov AY, Boyarskaya IA, Borovkova KE, Nikiforova LR, Salmova JV, Ul’yanovskii NV, Kosyakov DS, Vasilyev AV. Synthesis of 3-Aryl-3-(Furan-2-yl) Propanoic Acid Derivatives, and Study of Their Antimicrobial Activity. Molecules. 2022 Jul 19;27(14):4612. [Crossref], [Google Scholar], [Publisher]
  21. Malladi S, Nadh RV, Babu KS, Babu PS. Synthesis and antibacterial activity studies of 2, 4-di substituted furan derivatives. Beni-Suef University Journal of Basic and Applied Sciences. 2017 Dec 1;6(4):345-53. [Crossref], [Google Scholar], [Publisher]
  22. Andrade MM, Protti IF, Maltarollo VG, da Costa YF, de Moraes WG, Moreira NF, Garcia GG, Caran GF, Ottoni FM, Alves RJ, Moreira CP. Synthesis of arylfuran derivatives as potential antibacterial agents. Medicinal Chemistry Research. 2021 May;30:1074-86. [Crossref], [Google Scholar], [Publisher]
  23. Karipcin F, Atis M, Sariboga B, Celik H, Tas M. Structural, spectral, optical and antimicrobial properties of synthesized 1-benzoyl-3-furan-2-ylmethyl-thiourea. Journal of Molecular Structure. 2013 Sep 24;1048:69-77. [Crossref], [Google Scholar], [Publisher]
  24. Obafemi CA, Adelani PO, Fadare OA, Akinpelu DA, Famuyiwa SO. Synthesis, crystal structure and in vitro antibacterial activity of 2, 3a, 8b-trihydroxy-3-(thiophen-2-ylcarbonyl)-2-(trifluoromethyl)-2, 3, 3a, 8b-tetrahydro-4H-indeno [1, 2-b] furan-4-one. Journal of Molecular Structure. 2013 Oct 8;1049:429-35. [Crossref], [Google Scholar], [Publisher]
  25. Xia L, Idhayadhulla A, Lee YR, Wee YJ, Kim SH. Anti-tyrosinase, antioxidant, and antibacterial activities of novel 5-hydroxy-4-acetyl-2, 3-dihydronaphtho [1, 2-b] furans. European Journal of Medicinal Chemistry. 2014 Oct 30;86:605-12. [Crossref], [Google Scholar], [Publisher]
  26. Apaydın ÇB, Tansuyu M, Cesur Z, Naesens L, Göktaş F. Design, synthesis and anti-influenza virus activity of furan-substituted spirothiazolidinones. Bioorganic Chemistry. 2021 Jul 1;112:104958. [Crossref], [Google Scholar], [Publisher]
  27. Islam K, Pal K, Debnath U, Basha RS, Khan AT, Jana K, Misra AK. Anti-cancer potential of (1, 2-dihydronaphtho [2, 1-b] furan-2-yl) methanone derivatives. Bioorganic & Medicinal Chemistry Letters. 2020 Oct 15;30(20):127476. [Crossref], [Google Scholar], [Publisher]
  28. Ali H, Jabeen A, Maharjan R, Nadeem-ul-Haque M, Aamra H, Nazir S, Khan S, Olleik H, Maresca M, Shaheen F. Furan-conjugated tripeptides as potent antitumor drugs. Biomolecules. 2020 Dec 16;10(12):1684. [Crossref], [Google Scholar], [Publisher]
  29. Sashidhara KV, Kumar A, Kumar M, Sarkar J, Sinha S. Synthesis and in vitro evaluation of novel coumarin–chalcone hybrids as potential anticancer agents. Bioorganic & Medicinal Chemistry letters. 2010 Dec 15;20(24):7205-11. [Crossref], [Google Scholar], [Publisher]
  30. Barmade MA, Ghuge RB. Vicinal Diaryl Heterocyclic System: A Privileged Scaffold in the Discovery of Potential Therapeutic Agents. InVicinal Diaryl Substituted Heterocycles 2018 Jan 1 (pp. 1-20). Elsevier. [Crossref], [Google Scholar], [Publisher]
  31. Saeid H, Al-sayed H, Bader M. A Review on Biological and Medicinal Significance of Furan. AlQalam Journal of Medical and Applied Sciences, 2023;6(1):44-58. [Crossref], [Google Scholar], [Publisher]
  32. Gündüzalp AB, Parlakgümüş G, Uzun D, Özmen ÜÖ, Özbek N, Sarı M, Tunç T. Carbonic anhydrase inhibitors: Synthesis, characterization and inhibition activities of furan sulfonylhydrazones against carbonic anhydrase I (hCA I). Journal of Molecular Structure. 2016 Feb 5;1105:332-40. [Crossref], [Google Scholar], [Publisher]
  33. Vera ME, Mariani ML, Aguilera C, Penissi AB. Effect of a Cytoprotective Dose of Dehydroleucodine, Xanthatin, and 3-Benzyloxymethyl-5 H-furan-2-one on Gastric Mucosal Lesions Induced by Mast Cell Activation. International Journal of Molecular Sciences. 2021 Jun 1;22(11):5983. [Crossref], [Google Scholar], [Publisher]
  34. Tabei A, Ejtemaei R, Mahboubi A, Saniee P, Foroumadi A, Dehdari A, Almasirad A. Synthesis of new 2-(5-(5-nitrofuran-2-yl)-1, 3, 4-thiadiazol-2-ylimino) thiazolidin-4-one derivatives as anti-MRSA and anti-H. pylori agents. BMC Chemistry. 2022 Dec;16(1):1-1. [Crossref], [Google Scholar], [Publisher]
  35. Wang XD, Wei W, Wang PF, Yi LC, Shi WK, Xie YX, Wu LZ, Tang N, Zhu LS, Peng J, Liu C. Synthesis, molecular docking and biological evaluation of 3-arylfuran-2 (5H)-ones as anti-gastric ulcer agent. Bioorganic & Medicinal Chemistry. 2015 Aug 1;23(15):4860-5. [Crossref], [Google Scholar], [Publisher]
  36. Hosoe T, Iizuka T, Komai SI, Wakana D, Itabashi T, Nozawa K, Fukushima K, Kawai KI. 4-Benzyl-3-phenyl-5H-furan-2-one, a vasodilator isolated from Malbranchea filamentosa IFM 41300. Phytochemistry. 2005 Dec 1;66(23):2776-9. [Crossref], [Google Scholar], [Publisher]
  37. Klesiewicz K, Karczewska E, Nowak P, Mrowiec PM, Skiba-Kurek I, Białecka J, Majka Z, Berdzik-Kalarus S, Budak A, Zajdel P. Comparative in vitro studies of furazidin and nitrofurantoin activities against common uropathogens including multidrug-resistant strains of E. coli and S. aureus. Acta Poloniae Pharmaceutica-Drug Research. 2018 Jun 30;75(3). [Crossref], [Google Scholar], [PDF]
  38. Negrin ZR, Valdés YE, Pouron TB, López EJ, Borges KB. A novel 2-(2-methyl-2-nitrovinyl)-furan ectoparasitic drug: physicochemical characterization and determination of the raw material by gas chromatography mass spectrometry. Central European Journal of Chemistry. 2013 Apr;11:594-603. [Crossref], [Google Scholar], [Publisher]
  39. Kassem AF, Nassar IF, Abdel-Aal MT, Awad HM, El-Sayed WA. Synthesis and anticancer activity of new ((Furan-2-yl)-1, 3, 4-thiadiazolyl)-1, 3, 4-oxadiazole acyclic sugar derivatives. Chemical and Pharmaceutical Bulletin. 2019 Aug 1;67(8):888-95. [Crossref], [Google Scholar], [Publisher]
  40. Carro J, Ferreira P, Rodríguez L, Prieto A, Serrano A, Balcells B, Ardá A, Jiménez‐Barbero J, Gutiérrez A, Ullrich R, Hofrichter M. 5‐hydroxymethylfurfural conversion by fungal aryl‐alcohol oxidase and unspecific peroxygenase. The FEBS Journal. 2015 Aug;282(16):3218-29. [Crossref], [Google Scholar], [Publisher]
  41. Altintop MD, Sever B, Eklioğlu ÖA, Baysal M, Demirel R, Özdemir A. A series of furan-based hydrazones: design, synthesis, and evaluation of antimicrobial activity, cytotoxicity and genotoxicity. Letters in Drug Design & Discovery. 2020 Mar 1;17(3):312-22. [Crossref], [Google Scholar], [Publisher]