Document Type : Original Article

Authors

1 Research Center of Medicinal Plants, University of Sistan and Baluchestan, Zahedan, Iran

2 Department of Food Science and Technology, Zahedan University of Medical Sciences, Zahedan, Iran

3 Research Department of Agronomy and Plant Breeding, Agricultural Research Institute, University of Zabol, Zabol, Iran

Abstract

Background: Considering the increasing resistance of bacteria to antibiotics and the presence of antibacterial agents in plants
Objectives: the aim of this study was the antimicrobial and antibiofilm activity of Tecomella undulata and Momordica charantia ethanol and aceton leaf extract on antibiotic resistance Acinetobacter baumannii.
Methods: The leaves of Tecomella undulata and Momordica charantia were collected from Saravan city and extracted by rotary machine. Acinetobacter baumannii strains were collected from urine specimens of Imam Khomeini and Ali-ibn-Abi-Talib Hospitals. Minimum inhibitory concentration and minimum bactericidal concentration were determined by micro dilution method.
Results: The lowest MIC and MBC of ethanol leaf extract of Tecomella undulata was 0.62 and 1.25mg/mL, respectivelly. The lowest MIC and MBC of aceton leaf extract of Tecomella undulata was 0.31 and 0.62mg/mL, respectivelly. The lowest MIC and MBC of ethanol leaf extract of Momordica charantia was 1.25 and 2.5mg/mL, respectivelly. The lowest MIC and MBC of aceton leaf extract of Momordica charantia was 0.31 and 0.62mg/mL, respectivelly. The resistance of the strains was to amoxiclavanic (10%), ampicillin (20%), gentamicin (0%), ceftazidime (0%) and nitromicin (0%) antibiotics. The aceton extract had more effect on Acinetobacter baumannii than ethanolic extract. The effect of Momordica charantia and Tecomella undulata against Acinetobacter baumannii are the same.
Conclusion: By considering the results, obtained and increasing resistance of bacteria to chemical antibiotics, it is suggested that bacterial compositions of these plants can be used to treat bacteria.

Keywords

Main Subjects

Abhishek, S, Ujwala, P, Shivani, K, Meeta, B. (2013). Evaluation of antibacterial activity of Tecomella undulata leaves crude extracts. Int. Res. J. Biol. Sci., 2(6):60-62.
Ahmadikiya, F, Mosadegh, A, Moradi, M, Hossieni-Nave, H. (2017). Antimicrobial Resistance Patterns and Frequency of Extended-Spectrum Beta-Lactamase Genes among Acinetobacter Baumannii. J. Babol Univer. Med. Sci., 19(7):28-34. DOI: https://doi.org/0.22088/jbums.19.7.4
Ahmed, I, Lakhani, M, Gillett, M, John, A, Raza, H. (2001). Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momordica charantia (karela) fruit extract in streptozotocin-induced diabetic rats. Diabetes Res. Clin. Pract., 51(3):155-161. DOI: https://doi.org/10.1016/S0168-8227(00)00224-2
Anand, K, Agrawal, P, Kumar, S, Kapila, K. (2009). Comparison of cefoxitin disc diffusion test, oxacillin screen agar, and PCR for mecA gene for detection of MRSA. Ind. J. Med. Microbial., 27(1):27. PMID: 19172055
Angoti, G, Godarzi, H, Besharat, M, Hajizadeh, M, Zarringhalam Moghaddam, M. (2014). Evaluation of antibiotic resistance of clinical Acinetobacter baumannii isolated of Tabriz hospital by disk diffiusion and MIC methods. Res. Med., 38(2):106-110.
Ashraf, R, Sultana, B, Iqbal, M, Mushtaq, M. (2016). Variation in biochemical and antioxidant attributes of Raphanus sativus in response to foliar application of plant leaf extracts as plant growth regulator. J. Gen. Eng. Biotechnol., 14(1):1-8. DOI: https://doi.org/10.1016/j.jgeb.2016.08.003
Badmasti, F, Siadat, S D, Bouzari, S, Ajdary, S, Shahcheraghi, F. (2015). Molecular detection of genes related to biofilm formation in multidrug-resistant Acinetobacter baumannii isolated from clinical settings. J. Med. Microbial., 64(5):559-564. DOI: https://doi.org/10.1099/jmm.0.000058
Bahador, A, Saghii, H, Ataee, R, Esmaeili, D. (2015). The Study of inhibition effects Satureja khuzestaniea essence against gene expression bap acinetobacter baumannii with real time PCR technique. Iran. J. Med. Microbiol., 9(1):42-49.
Bala, M, Gupte, S, Aggarwal, P, Kaur, M, Manhas, A. (2016). Biofilm producing multidrug resistant Acinetobacter species from a tertiary care hospital: a therapeutic challenge. Int. J. Res. Med. Sci., 4(7):3024-3026. DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20161997
Bauer, A. (1966). Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol., 45:149-158. NII Article ID (NAID): 10024190092
Boromand, M, Akyani, M, Sheikhvatan, R, Hekmat Yazdi, S, Saboorian, R, Hashemi, S. (2009). Evaluation of antimicrobial resistance of Acinetobacter baumannii to Imipenem, Ciprofloxacinand Ceftazidim using E test. Iran J. Publ. Health, 2(38):130-133.
Bottone, EJ, Hanna, BA. (1978). Identification of fastidious and recondite Gram-negative species. Glucose nonfermenting Gram-negative bacteria in clinical microbiology: CRC Press New York. p 79-80.
Costa, JGM, Nascimento, EM, Campos, AR, Rodrigues, FF. (2010). Antibacterial activity of Momordica charantia (Curcubitaceae) extracts and fractions. J. Basic Clin. Pharm., 2(1):45-51. PMCID: PMC3979203; PMID: 24826002
Costerton, JW, Stewart, PS, Greenberg, EP. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284(5418):1318-1322. DOI: https://doi.org/10.1126/science.284.5418.1318
Ebrahimi, A, Jafferi, H, Habibian, S, Lotfalian, S. (2018). Evaluation of Anti biofilm and Antibiotic Potentiation Activities of Silver Nanoparticles Against some Nosocomial Pathogens. Iran. J. Pharm. Sci., 14(2):7-14. DOI: https://doi.org/10.22034/ijps.2018.33684
Fazeli-Nasab, B. (2018). The effect of explant, BAP and 2,4-D on callus induction of trachyspermum ammi. Potravinar. Slovak J. Food Sci., 12(1):578-586. DOI: https://doi.org/10.5219/953
Fazeli-nasab, B, Moshtaghi, N, Forouzandeh, M. (2019). Effect of Solvent Extraction on Phenol, Flavonoids and Antioxidant Activity of some Iranian Native Herbs. Scientific J. Ilam Univer. Med. Sci., 27(3):14-26. DOI:  https://doi.org/10.29252/sjimu.27.3.14
Fazeli-Nasab, B, Rossello, JA, Mokhtarpour, A. (2018). Effect of TiO2 nanoparticles in thyme under reduced irrigation conditions. Potravinárst. Slovak J. Food Sci., 12(1):622-627. DOI: https://doi.org/10.5219/958
Gehlot, D, Bohra, A. (2000). Antibacterial effect of some leaf extracts on Salmonella typhi. Ind. J. Med. Sci., 54(3):102-105. PMID: 11227613
Ghosh, D. (2014). Does Bitter Melon (Momordica charantia) have Antibacterial Property. J. Food Process Technol., 5(345):2. Corpus ID: 85664156, DOI: https://doi.org/10.4172/2157-7110.1000345  
Goh, HS, Beatson, SA, Totsika, M, Moriel, DG, Phan, MD, Szubert, J, Runnegar, N, Sidjabat, HE, Paterson, DL, Nimmo, GR. (2013). Molecular analysis of the Acinetobacter baumannii biofilm-associated protein. Appl. Environ. Microbiol., 79(21):6535-6543. DOI: https://doi.org/10.1128/AEM.01402-13
Gregersen, T. (1978). Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur. J. Appl. Microbial. Biotechnol., 5(2):123-127. DOI: https://doi.org/10.1007/BF00498806
Grover, J, Yadav, S. (2004). Pharmacological actions and potential uses of Momordica charantia: a review. J Ethnopharmacol., 93(1):123-132. DOI: https://doi.org/10.1016/j.jep.2004.03.035
Henwood, CJ, Gatward, T, Warner, M, James, D, Stockdale, MW, Spence, RP, Towner, KJ, Livermore, DM, Woodford, N. (2002). Antibiotic resistance among clinical isolates of Acinetobacter in the UK, and in vitro evaluation of tigecycline (GAR-936). J. Antimicrob. Chemother., 49(3):479-487. DOI: https://doi.org/10.1093/jac/49.3.479
Houari, A, Di Martino, P. (2007). Effect of chlorhexidine and benzalkonium chloride on bacterial biofilm formation. Lett. Appl. Microbial., 45(6):652-656. DOI: https://doi.org/10.1111/j.1472-765X.2007.02249.x
Jahan, F, Lawrence, R, Kumar, V, Junaid, M. (2011). Evaluation of antimicrobial activity of plant extracts on antibiotic susceptible and resistant Staphylococcus aureus strains. J. Chem .Pharm. Res., 3(4):777-789.
Jain, M, Kapadia, R, Jadeja, RN, Thounaojam, MC, Devkar, RV, Mishra, SH. (2012). Traditional uses, phytochemistry and pharmacology of Tecomella undulata–a review. Asian Pac. J. Trop. Biomed., 2(3):S1918-S1923. DOI: https://doi.org/10.1016/S2221-1691(12)60521-8
Jakobsen, TH, Tolker-Nielsen, T, Givskov, M. (2017). Bacterial biofilm control by perturbation of bacterial signaling processes. Int. J. Mol. Sci., 18(9):1970. https://doi.org/10.3390/ijms18091970
Johnson, MJ, Thatcher, E, Cox, ME. (1995). Techniques for controlling variability in gram staining of obligate anaerobes. J. Clin. Microbial., 33(3):755-758. PubMed: 7538512
Karimipour, SN, Tanomand, A, Rostamnia, S. (2016). The Antibacterial Activity Evaluation of the Nanoparticles of Silver on Acinetobacter Baumannii. J. Fasa Univer. Med. Sci., 6(2):264-270.
Kazemi-Pour, N, Dusane, DH, Dhakephalkar, PK, Zamin, FR, Zinjarde, SS, Chopade, BA. (2011). Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Immunol. Med. Microbiol., 62(3):328-338. DOI: https://doi.org/10.1111/j.1574-695X.2011.00818.x
Khare, CP. (2008). Indian medicinal plants: an illustrated dictionary: Springer Science & Business Media.
Khatri, A, Garg, A, Agrawal, SS. (2009). Evaluation of hepatoprotective activity of aerial parts of Tephrosia purpurea L. and stem bark of Tecomella undulata. J. Ethnopharmacol., 122(1):1-5. DOI: https://doi.org/10.1016/j.jep.2008.10.043
Laghari, AQ, Memon, S, Nelofar, A, Laghari, AH. (2013). Tecomella undulata G. Don: a rich source of flavonoids. Indust. Crop. Product., 43:213-217. DOI: https://doi.org/10.1016/j.indcrop.2012.07.025
Lee, G, Kim, BS. (2014). Biological reduction of graphene oxide using plant leaf extracts. Biotechnol. Prog., 30(2):463-469. DOI: https://doi.org/10.1002/btpr.1862
Loehfelm, TW, Luke, NR, Campagnari, AA. (2008). Identification and characterization of an Acinetobacter baumannii biofilm-associated protein. J. Bacterial., 190(3):1036-1044. DOI: https://doi.org/10.1128/JB.01416-07
Mahmoudi, H, Ghasemi Bassir, HR, Hosseini, SM, Arabestani, MR, Alikhani, MY. (2016). The frequency of bacteria isolated from blood cultures and antibiotic susceptibility patterns among admitted patients in Hospital of Hamedan University of Medical Sciences. Iran. J. Med. Microbiol., 10(4):69-74.
Mahmudpour, M, Askari, A, Yousefi, F. (2019). Antibacterial Effect Leaf Extract of Avicennia marina on Standard and Clinical Strains of Acinetobacter baumannii. ISMJ, 22(3):150-159.
Mashreghi, M, Momtazi, F. (2012). Comparison of the Antibacterial Effects of Various Concentrations of Alcoholic Extracts of Rosmarinus officinalis, Hypericum perforatum and Carthamus tinctorius on the Growth Phases of Esherichia coli O157. J. Rafsanjan Univer. Med. Sci., 11(2):103-114.
Mohammadi, M, Masoumipour, F, Hassanshahian, M, Jafarinasab, T. (2019). Study the antibacterial and antibiofilm activity of Carum copticum against antibiotic-resistant bacteria in planktonic and biofilm forms. Microb. Pathogen., 129:99-105. DOI: https://doi.org/10.1016/j.micpath.2019.02.002
Mohsenzadeh, S, Amiri, AA, Sayyadnia tayyebi, N. (2010). Lapachol extraction from inner bark stem of Tecomella undulata (Roxb.) Seem. Iran. J. Med. Aromatic Plant. Res., 26(1):114-120. DOI: https://doi.org/10.22092/ijmapr.2010.6986  
Mozaffari, J, Abbasi, MR. (2005). Genetic reserves of forage National Plant Gene Bank of Iran. 1st Conference Forage plants in Iran, Karaj.
Mwambete, K. (2009). The in vitro antimicrobial activity of fruit and leaf crude extracts of Momordica charantia: A Tanzania medicinal plant. African Health Sci., 9(1):34-39.
Nagasawa, H, Watanabe, K, Inatomi, H. (2002). Effects of bitter melon (Momordica charantia l.) or ginger rhizome (Zingiber offifinale rosc) on spontaneous mammary tumorigenesis in SHN mice. Am. J. Chin. Med., 30:195-205. DOI: https://doi.org/10.1142/S0192415X02000302
Nicodemo, A, Araujo, M, Ruiz, A, Gales, AC. (2004). In vitro susceptibility of Stenotrophomonas maltophilia isolates: comparison of disc diffusion, Etest and agar dilution methods. J. Antimicrob. Chem., 53(4):604-608. DOI: https://doi.org/10.1093/jac/dkh128
Omoregbe, R, Ikuebe, O, Ihimire, I. (1996). Antimicrobial activity of some medicinal plants extracts on Escherichia coli, Salmonella paratyphi and Shigella dysenteriae. African J. Med. Med. Sci., 25(4):373-375. PMID: 9532310
Overbye, KM, Barrett, JF. (2005). Antibiotics: where did we go wrong? Drug Discovery Today, 10(1):45-52. DOI: https://doi.org/10.1016/S1359-6446(04)03285-4
Parekh, J, Jadeja, D, Chanda, S. (2006). Efficacy of aqueous and methanol extracts of some medicinal plants for potential antibacterial activity. Turkish J. Biol., 29(4):203-210.
Peleg, AY, Seifert, H, Paterson, DL. (2008). Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbial. Rev., 21(3):538-582. DOI: https://doi.org/10.1128/CMR.00058-07  
Rahbar, M, Mehrgan, H, Aliakbari, NH. (2010). Prevalence of antibiotic-resistant Acinetobacter baumannii in a 1000-bed tertiary care hospital in Tehran, Iran. Ind. J. Pathol. Microbiol., 53(2):290.
Sadeghi Fard, N, Ranjbar, R, Ghasemi, A, Pakzad, A, Zaemi Yazdi, R, Zaheri, A, Hematian, A, Ghafourian, S. (200). Evaluation of drug resistance of Acinetobacterium bumans and other Acinetobacter species isolated from three hospitals in Tehran. Scientific J. Ilam Univer. Med. Sci., 3:14-25.
Saravani, K, Javadian, F. (2020). Investigating Antimicrobial Effects of Tecomella undulata Ethanolic Extract on Antibiotic Resistant Acinetobacter baumannii. J. Gen. Cell Biol. (JGCB), 3(1):140-144.
Simhon, A, Rahav, G, Shazberg, G, Block, C, Bercovier, H, Shapiro, M. (2001). Acinetobacter baumannii at a tertiary-care teaching hospital in Jerusalem, Israel. J. Clin. Microbial., 39(1):389-391. DOI: https://doi.org/10.1128/JCM.39.1.389-391.2001
Sivendra, R, Lo, H, Lim, K. (1975). Identification of Chromobacterium violaceum: pigmented and non-pigmented strains. Microbiology, 90(1):21-31. DOI:  https://doi.org/10.1099/00221287-90-1-21
Soroush, S, Haghi-Ashtiani, MT, Taheri-Kalani, M, Emaneini, M, Aligholi, M, Sadeghifard, N, Pakzad, I, Abedini, M, Yasemi, M, Paiman, H. (2010). Antimicrobial resistance of nosocomial strain of Acinetobacter baumannii in Children’s Medical Center of Tehran: a 6-year prospective study. Acta Med. Iran., 48(3):178-184.
Srinivasan, R, Stewart, PS, Griebe, T, Chen, CI, Xu, X. (1995). Biofilm parameters influencing biocide efficacy. Biotechnol. Bioengin., 46(6):553-560. DOI: https://doi.org/10.1002/bit.260460608
Thanawala, P, Jolly, C. (1993). Pharmacognostical, phytochemical and antimicrobial studies on stem bark of tecomella undulata seem. Anc. Sci. Life, 12(3-4):414. PMCID: PMC3336562; PMID: 22556621
Uwingabiye, J, Frikh, M, Lemnouer, A, Bssaibis, F, Belefquih, B, Maleb, A, Dahraoui, S, Belyamani, L, Bait, A, Haimeur, C. (2016). Acinetobacter infections prevalence and frequency of the antibiotics resistance: comparative study of intensive care units versus other hospital units. Pan. Afr. Med. J. 23(1):191. DOI: http://dx.doi.org/10.11604/pamj.2016.23.191.7915
Vahedi, A, Baghani, A, Baseri, Z, Pourmand, R. (2018). Frequency and antibiotic resistance patterns of isolated bacteria from positive blood culture of hospitalized patients. Tehran Univer. Med. J., 75(12):902-912.
Zhao, SY, Jiang, DY, Xu, Pc, Zhang, Yk, Shi, Hf, Cao, HL, Wu, Q. (2015). An investigation of drug-resistant Acinetobacter baumannii infections in a comprehensive hospital of East China. Ann. Clin. Microbial. Antimicrob., 14(1):7. DOI: https://doi.org/10.1186/s12941-015-0066-4