Document Type : Original Article

Authors

Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Abstract

Despite the toxic effects on numerous organs, silver nanoparticles can be used to cease cell cycle and promotes apoptosis in cancerous cells. Therefore, by choosing the right dosage nanoparticles can be helpful for cancer treatment, whilst do not harm normal tissues. In the current study, it has been tried to measure silver nanoparticles toxicity against HPB-ALL leukemia cell line and normal human lymphocytes. The cytotoxicity of 20-nanometer silver nanoparticles was investigated by MTT test. Also, nanoparticles effect on apoptosis was assessed by flow cytometry. DNA fragmentation analysis was done to investigate the genotoxicity. MTT colorimetric assay revealed that the maximal half inhibitory concentration (IC50) of silver nanoparticles were at 8.43µg/mL and 15.74µg/mL in cancer cell-line and normal cells, respectively at 24-hour exposure. The IC50 doses of silver nanoparticles were used to assess the induction of apoptosis by flow cytometry. The apoptosis occurred in 12.34% of normal cells and 36.88% of HPB-ALL cells. The difference between these two groups were statistically significant (P

Keywords

 
Ahamed, M, Alsalhi, MS, Siddiqui, MKJ. (2010). Silver nanoparticle applications and human health. Clin. Chim. Acta Int. J. Clin. Chem., 411(23-24):1841–1848.
Arber, DA, Orazi, A, Hasserjian, R, Thiele, J, Borowitz, MJ, Le Beau, MM, Bloomfield, CD, Cazzola, M, Vardiman, JW. (2016). The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 127(20):2391–2405.
Ávalos Fúnez, A, Isabel Haza, A, Mateo, D, Morales, P. (2013). In vitro evaluation of silver nanoparticles on human tumoral and normal cells. Toxicol. mechan. method., 23(3):153–160.
Bodet-Milin, C, Kraeber-Bodéré, F, Eugène, T, Guérard, F, Gaschet, J, Bailly, C, Mougin, M, Bourgeois, M, Faivre-Chauvet, A, Chérel, M, Chevallier, P. (2016). Radioimmunotherapy for Treatment of Acute Leukemia. Semin. Nucl. Med., 46(2):135–146.
Cameron, SJ, Hosseinian, F, Willmore, WG. (2018). A Current Overview of the Biological and Cellular Effects of Nanosilver. Int. J. Mol. Sci., 19(7):2030. DOI: 10.3390/ijms19072030.
Chauhan, P. (2015). Nanosilver and its Medical Implications. J. Nanomed. Res., 2(5):39.
Choi, YJ, Park, JH, Han, JW, Kim, E, Jae-Wook, O, Lee, SY, Kim, JH, Gurunathan, S. (2016). Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells. Int. J. Mol. Sci., 17 (12):2077.
Clarke, RT, van den Bruel, A, Bankhead, C, Mitchell, CD, Phillips, B, Thompson, MJ. (2016). Clinical presentation of childhood leukaemia: a systematic review and meta-analysis. Arch. Dis. Child., 101(10):894–901.
Coustan-Smith, E, Song, G, Clark, C, Key, L, Liu, P, Mehrpooya, M, Stow, P, Su, X, Shurtleff, S, Pui, CH, Downing, JR, Campana, D. (2011), New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood, 117(23):6267–6276.
Dasgupta, N, Ramalingam, C. (2016). Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environ. Chem. Lett., 14(4):477–485. DOI: 10.1007/s10311-016-0583-1.
Gunawan, C, Marquis, CP, Amal, R, Sotiriou, GA, Rice, SA, Harry, EJ. (2017). Widespread and Indiscriminate Nanosilver Use: Genuine Potential for Microbial Resistance. ACS Nano, 11(4):3438–3445.
Guo, Z, Zeng, G, Cui, K, Chen, A. (2019). Toxicity of environmental nanosilver. Mechanism and assessment. Environ. Chem. Lett., 17(1):319–333. DOI: 10.1007/s10311-018-0800-1.
Gurunathan, S, Han, Ja, Morsy, A Eppakayala, V, Hyun Park, J, Cho, SG, Lee, KJ, Kim, JH. (2013). Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). J. Indust. Eng. Chem., 19:1600-1605. DOI: 10.1016/j.jiec.2013.01.029.
Horie, Y, Nemoto, H, Itoh, M, Kosaka, H, Morita, K. (2016). Fermented Brown Rice Extract Causes Apoptotic Death of Human Acute Lymphoblastic Leukemia Cells via Death Receptor Pathway. Appl. Biochem. Biotechnol., 178(8):1599–1611. DOI: 10.1007/s12010-015-1970-y.
Hsu, S, Tseng, HJ, Lin, YC. (2010). The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials, 31(26):6796–6808. DOI: 10.1016/j.biomaterials.2010.05.015.
Kim, JS, Kuk, E, Yu, KN, Kim, JH, Park, SJ, Lee, HJ, Kim, SH, Park, YK, Park, YH, Hwang, CY, Kim, YK, Lee, YS, Jeong, DH, Cho, MH. (2007). Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med., 3(1):95–101. DOI: 10.1016/j.nano.2006.12.001.
Li, Y, Qin, T, Ingle, T, Yan, J, He, W, Yin, JJ, Chen, T. (2017). Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch. Toxicol., 91(1):509–519. DOI: 10.1007/s00204-016-1730-y.
Maurer, LL, Meyer, JN. (2016). A systematic review of evidence for silver nanoparticle-induced mitochondrial toxicity. Environ. Sci. Nano, 3(2):311–322. DOI: 10.1039/C5EN00187K.
McShan, D, Ray, PC, Yu, H. (2014). Molecular toxicity mechanism of nanosilver. J. food Drug Anal., 22(1):116–127. DOI: 10.1016/j.jfda.2014.01.010.
Mohammadi Kian, M, Mohammadi, S, Tavallaei, M, Chahardouli, B, Rostami, S, Zahedpanah, M, Ghavamzadeh, A, Nikbakht, M. (2018). Inhibitory Effects of Arsenic Trioxide and Thalidomide on Angiogenesis and Vascular Endothelial Growth Factor Expression in Leukemia Cells. Asian Pacific J. Cancer Prevent. APJCP, 19(4):1127–1134. DOI: 10.22034/APJCP.2018.19.4.1127.
Ohnishi, S, Takeda, H. (2015). Herbal medicines for the treatment of cancer chemotherapy-induced side effects. Front. pharmacol., 6:14. DOI: 10.3389/fphar.2015.00014.
Paknejadi, M, Bayat, M, Salimi, M, Razavilar, V. (2018). Concentration and Time-Dependent Cytotoxicity of Silver Nanoparticles on Normal Human Skin Fibroblast Cell Line. Iran REd Crescent Med. J., 20(10): e79183.
Park, JH, Rivière, I, Gonen, M, Wang, X, Sénéchal, B, Curran, KJ, Sauter, C, Wang, Y, Santomasso, B, Mead, E, Roshal, M, Maslak, P, Davila, M, Brentjens, RJ, Sadelain, M. (2018). Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. New England J. Med., 378(5):449–459. DOI: 10.1056/NEJMoa1709919.
Parnsamut, C, Brimson, S. (2015). Effects of silver nanoparticles and gold nanoparticles on IL-2, IL-6, and TNF-α production via MAPK pathway in leukemic cell lines. Genet. Mol. Res. GMR, 14(2):3650–3668. DOI: 10.4238/2015.April.17.15.
Pfeffer, CM, Singh, ATK. (2018). Apoptosis: A Target for Anticancer Therapy. Int.  J. Mol. Sci., 19(2):448. DOI: 10.3390/ijms19020448.
Pieters, R, Carroll, WL. (2008). Biology and treatment of acute lymphoblastic leukemia. Pediat. Clin. North Am., 55(1):1-20, ix. DOI: 10.1016/j.pcl.2007.11.002.
Pui, CH, Evans, WE. (2006). Treatment of acute lymphoblastic leukemia. New England J. Med., 354(2):166–178. DOI: 10.1056/NEJMra052603.
Pui, CH, Yang, JJ, Hunger, SP, Pieters, R, Schrappe, M, Biondi, A, Vora, A, Baruchel, A, Silverman, LB, Schmiegelow, K, Escherich, G, Horibe, K, Benoit, YCM, Izraeli, S, Yeoh, AEJ, Liang, DH, Downing, JR, Evans, WE, Relling, MV, Mullighan, CG. (2015). Childhood Acute Lymphoblastic Leukemia: Progress Through Collaboration. J. Clin. Oncol. Offic. J. Am. Soc. Clin. Oncol., 33(27):2938–2948. DOI: 10.1200/JCO.2014.59.1636.
Rashmezad, M, Ali Asgary, E, Tafvizi, F, Sadat Shandiz, SA, Mirzaie, A. (2015). Comparative study on cytotoxicity effect of biological and commercial synthesized nanosilver on human gastric carcinoma and normal lung fibroblast cell lines. Tehran University Med. J., 72(12):799-807.
Reidy, B, Haase, A, Luch, A, Dawson, KA, Lynch, I. (2013). Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials (Basel, Switzerland), 6(6):2295–2350. DOI: 10.3390/ma6062295.
Reshi, MS, Bhatia, G, Yadav, D, Uthra, C, Shrivastava, S, Arora, JS, Shukla S. (2016). Pure silver nanoparticles showed potential anticancer effect on colon and breast cancer cell lines. Octa J. Biosci., 4(2):46–48.
Shahabzzadeh, D, Ahari, H, Motallebi, A, Anvar, AA, Moaddab, S, Asadi, T, Shokrgozar, MA, Rahman-Nya, J. (2011). In vitro effect of Nanosilver toxicity on fibroblast and mesenchymal stem cell lines. Iran. J. Fisher. Sci., 10(3):447–496.
Shahoon, H. (2013). The Comparison of Silver and Hydroxyapatite Nanoparticles Biocompatibility on L929 Fibroblast Cells. An In vitro Study. J. Nano. Nanotechol., 4:4. DOI: 10.4172/2157-7439.1000173.
Terwilliger, T.; Abdul-Hay, M. (2017): Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J., 7(6):e577. DOI: 10.1038/bcj.2017.53.
Topp, MS, Kufer, P, Gökbuget, N, Goebeler, M, Klinger, M, Neumann, S, Horst, HA, Raff, T, Viardot, A, Schmid, M, Stelljes, M, Schaich, M, Degenhard, E, Köhne-Volland, R, Brüggemann, M, Ottmann, O, Pfeifer, H, Burmeister, T, Nagorsen, D, Schmidt, M, Lutterbuese, R, Reinhardt, C, Baeuerle, PA, Kneba, M, Einsele, H, Riethmüller, G, Hoelzer, D, Zugmaier, G, Bargou, RC. (2011). Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J. Clin. Oncol. Offic. J. Am. Soc. Clin. Oncol., 29(18):2493–2498. DOI: 10.1200/JCO.2010.32.7270.
Xue, Y, Wang, J, Huang, Y, Gao, X, Kong, L, Zhang, T, Tang, M. (2018). Comparative cytotoxicity and apoptotic pathways induced by nanosilver in human liver HepG2 and L02 cells. Human  Experiment. Toxicol., 37(12):1293–1309. DOI: 10.1177/0960327118769718.
Yu, XQ, Xu, LX. (2016). Effects of Silver Nanoparticles on the In Vitro Culture and Differentiation of Human Bone Marrow-Derived Mesenchymal Cells. MSF, 852:1307–1312. DOI: 10.4028/www.scientific.net/MSF.852.1307.
Zangeneh, MM. (2019). Green synthesis and formulation a modern chemotherapeutic drug of Spinacia oleracea L. leaf aqueous extract conjugated silver nanoparticles; Chemical characterization and analysis of their cytotoxicity, antioxidant, and anti‐acute myeloid leukemia properties in comparison to doxorubicin in a leukemic mouse model. Appl. Organometal. Chem., 34(1):765. DOI: 10.1002/aoc.5295.
Zhang, J, He, C, Fei, X, Xu, T. (2018). Anti-Leukemia Activity of Hyaluronic Acid Coated Silver Nanoparticles for Selective Targeting to Leukemic Cells. J. Biomater Tissue Eng., 8(6):906–910. DOI: 10.1166/jbt.2018.1812.
Zhang, XF, Liu, ZG, Shen, W, Gurunathan, S. (2016). Silver Nanoparticles. Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci., 17(9): 1534. DOI: 10.3390/ijms17091534.