Document Type : Original Article


Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria


This study delves into the investigation of the physicochemical characteristics and solubilization patterns of AR-27 dye within micellar environments containing the cationic surfactant CTABr, in conjunction with various electrolytes. The primary aim is to explore the augmented sequestration of AR-27 dye and its interplay with CTABr micelles through the utilization of UV-Visible Spectroscopy. The outcomes reveal a substantial enhancement in dye entrapment when electrolytes are introduced into CTABr micellar solutions compared to CTABr alone. Specifically, the partition coefficient (𝐾𝑥) for AR-27 dye in CTABr media devoid of salt stands at 5.29 x 105, whereas in combination with NaCl, KCl, and NH4Cl, the 𝐾𝑥 values escalate to 1.46 x 106, 1.84 x 106, and 2.57 x 106, respectively. Furthermore, the binding constants (𝐾𝒃) for CTABr, CTABr/NH4Cl, CTABr/KCl, and CTABr/NaCl are determined as 4.8 x 103, 4.4 x 104, 2.6 x 104, and 1.84 x 104 dm3/mol, respectively. Lower Gibbs free energy values indicate a deeper penetration of dye molecules into the micelles. To sum up, this research underscores the pivotal role of incorporating electrolytes into CTABr micellar media in augmenting the sequestration of AR-27 dye. These findings offer valuable insights into the physicochemical attributes and solubilization dynamics of AR-27 dye within CTABr micellar environments, enhancing our comprehension of the interactions between the dye and micellar structures.

Graphical Abstract

Physicochemical Properties and Solubilization of Acid Red-27 Dye in CTABr Micellar Media: Enhanced Trapping and Interactional Investigation


Main Subjects


©2023 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:


Sami Publishing Company remains neutral concerning jurisdictional claims in published maps and institutional affiliations.


Sami Publishing Company



  1. Guerrero-Coronilla I, Morales-Barrera L, Cristiani-Urbina E. Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves, J. Environ. Manage.; 2015 Apr 1; 152:99-108. [Crossref], [Google Scholar], [Publisher]
  2. Liao H, Wang Z. Adsorption removal of amaranth by nanoparticles-composed Cu2O microspheres, J. Alloy. Compd.; 2018 Nov 15; 769:1088-95. [Crossref], [Google Scholar], [Publisher]
  3. Alaoui MS, Ghanam J, Merzouki M, Penninckx MJ, Benlemlih M. Immobilisation of Pycnoporus coccineus laccase in ca alginate beads for use in the degradation of aromatic compounds present in olive oil mill wastewaters, J. Biotechnol. Lett.; 2013 Jun 1; 4(2):91. [Google Scholar], [Publisher]
  4. Munawar I, Bhatti IA, Muhammad ZU, Bhatti HN, Muhammad S. Efficiency of advanced oxidation processes for detoxification of industrial effluents, Asian J. Chem.; 2014; 26(14):4291-6. [Google Scholar], [Publisher]
  5. Dave N, Joshi T. A concise review on surfactants and its significance, Int. J. Appl. Chem; 2017 Sep 30; 13(3):663-72. [Crossref], [Google Scholar], [Publisher]
  6. Smith GA, Hand KR, inventors; Huntsman Petrochemical LLC, assignee. Enhanced solubilization using extended chain surfactants, United States patent US 7,467,633; 2008 Dec 23. [Google Scholar], [Publisher]
  7. Taj MB, Raheel A, Alelwani W, Hajjar D, Makki A, Alnajeebi AM, Babteen NA, Tırmizi SA, Noor S. A Swift One-Pot Solvent-Free Synthesis of Benzimidazole Derivatives and Their Metal Complexes: Hydrothermal Treatment, Enzymatic Inhibition, and Solubilization Studies, Russ. J. Gen. Chem.; 2020 Aug; 90:1533-43. [Crossref], [Google Scholar], [Publisher]
  8. Noor S, Younas N, Rashid MA, Nazir S, Usman M, Naz T. Spectroscopic, conductometric and biological investigation of [Ni (phen) 3] F2. EtOH. MeOH. 8H2O complex in anionic micellar media, Colloids Interface Sci. Commun.; 2018 Nov 1; 27:26-34. [Crossref], [Google Scholar], [Publisher]
  9. Noor S, Taj MB. Mixed-micellar approach for enhanced dye entrapment: a spectroscopic study, J. Mol. Liq.; 2021 Sep 15; 338:116701. [Crossref], [Google Scholar], [Publisher]
  10. Noor S, Taj MB, Ashar A. Solubilization of cationic dye in single and mixed micellar media, J. Mol. Liq.; 2021 May 15; 330:115613. [Crossref], [Google Scholar], [Publisher]
  11. Noor S, Rashid MA. Solubilization and thermodynamic attributes of nickel phenanthroline complex in micellar media of sodium 2-ethyl hexyl sulfate and sodium bis (2-ethyl hexyl) sulfosuccinate, Tenside Surfactants Deterg.; 2019 Nov 15; 56(6):490-8. [Crossref], [Google Scholar], [Publisher]
  12. Taj MB, Alkahtani MD, Ali U, Raheel A, Alelwani W, Alnajeebi AM, Babteen NA, Noor S, Alshater H. New heteroleptic 3D metal complexes: synthesis, antimicrobial and solubilization parameters, Molecules; 2020 Sep 16; 25(18):4252. [Crossref], [Google Scholar], [Publisher]
  13. Petcu AR, Rogozea EA, Lazar CA, Olteanu NL, Meghea A, Mihaly M. Specific interactions within micelle microenvironment in different charged dye/surfactant systems, Arabian Journal of Chemistry; 2016 Jan 1; 9(1):9-17. [Crossref], [Google Scholar], [Publisher]
  14. Taboada P, Ruso JM, Garcia M, Mosquera V. Surface properties of some amphiphilic antidepressant drugs, Colloids Surf. A Physicochem. Eng. ASP; 2001 Apr 1; 179(1):125-8. [Crossref], [Google Scholar], [Publisher]
  15. Bielska M, Sobczyńska A, Prochaska K. Dye–surfactant interaction in aqueous solutions. Dyes Pigm.; 2009 Feb 1;80(2):201-5. [Crossref], [Google Scholar], [Publisher]
  16. Fazeli S, Sohrabi B, Tehrani-Bagha AR. The study of Sunset Yellow anionic dye interaction with gemini and conventional cationic surfactants in aqueous solution, Dyes Pigm.; 2012 Dec 1; 95(3):768-75. [Crossref], [Google Scholar], [Publisher]
  17. Tehrani-Bagha AR, Singh RG, Holmberg K. Solubilization of two organic dyes by cationic ester-containing gemini surfactants, J. Colloid Interface Sci.; 2012 Jun 15; 376(1):112-8. [Crossref], [Google Scholar], [Publisher]
  18. Tehrani-Bagha AR, Holmberg K. Solubilization of hydrophobic dyes in surfactant solutions, Materials; 2013 Feb 21; 6(2):580-608. [Crossref], [Google Scholar], [Publisher]
  19. Rashidi-Alavijeh M, Javadian S, Gharibi H, Moradi M, Tehrani-Bagha AR, Shahir AA. Intermolecular interactions between a dye and cationic surfactants: effects of alkyl chain, head group, and counterion, Colloids Surf. A Physicochem. Eng. ASP.; 2011 May 5; 380(1-3):119-27. [Crossref], [Google Scholar], [Publisher]
  20. Hussain KI, Usman M, Siddiq M, Rasool N, Bokhari TH, Ibrahim M, Rana UA, Khan SU. Application of micellar-enhanced ultrafiltration for the removal of reactive blue 19 from aqueous media, J. Disper. Sci. Technol.; 2015 Sep 2; 36(9):1208-15. [Crossref], [Google Scholar], [Publisher]
  21. Alam MS, Ragupathy R, Mandal AB. The self-association and mixed micellization of an anionic surfactant, sodium dodecyl sulfate, and a cationic surfactant, cetyltrimethylammonium bromide: conductometric, dye solubilization, and surface tension studies, J. Disper. Sci. Technol.; 2016 Nov 1; 37(11):1645-54. [Crossref], [Google Scholar], [Publisher]
  22. Petcu AR, Rogozea EA, Lazar CA, Olteanu NL, Meghea A, Mihaly M. Specific interactions within micelle microenvironment in different charged dye/surfactant systems, Arab. J. Chem.; 2016 Jan 1; 9(1):9-17. [Crossref], [Google Scholar], [Publisher]
  23. Asadzadeh Shahir A, Javadian S, Razavizadeh BB, Gharibi H. Comprehensive study of tartrazine/cationic surfactant interaction, J. Phy. Chem. B; 2011 Dec 15; 115(49):14435-44. [Crossref], [Google Scholar], [Publisher]
  24. Craven BR, Datyner A. The interaction between some acid wool dyes and nonylphenol–ethylene oxide derivatives, JSDC; 1963 Nov; 79(11):515-9. [Crossref], [Google Scholar], [Publisher]
  25. McBain JW, Wilder AG, Merrill Jr RC. Solubilization of water-insoluble dye by colloidal electrolytes and non-ionizing detergents, J. Phy. Chem.; 1948 Jan; 52(1):12-22. [Crossref], [Google Scholar], [Publisher]
  26. Tehrani-Bagha AR, Singh RG, Holmberg K. Solubilization of two organic dyes by anionic, cationic and nonionic surfactants, Colloid Surf. A; 2013 Jan 20; 417:133-9. [Crossref], [Google Scholar], [Publisher]
  27. Tokiwa F. Solubilization behavior of sodium dodecylpolyoxyethylene sulfates in relation to their polyoxyethylene chain lengths, J. Phy. Chem.; 1968 Apr; 72(4):1214-7. [Crossref], [Google Scholar], [Publisher]
  28. Abe A, Imae T, Ikeda S. Solubilization properties of aqueous solutions of alkyltrimethylammonium halides toward a water-insoluble dye, Colloid Polym. Sci.; 1987 Jul; 265:637-45. [Crossref], [Google Scholar], [Publisher]
  29. McBain JW, Green SA. Solubilization of water-insoluble dye in soap solutions: Effects of added salts, J. Am. Chem. Soc.; 1946 Sep; 68(9):1731-6. [Crossref], [Google Scholar], [Publisher]
  30. Ozeki S, Ikeda S. The difference in solubilization power between spherical and rodlike micelles of dodecyldimethylammonium chloride in aqueous solutions, J. Phy. Chem.; 1985 Nov; 89(23):5088-93. [Crossref], [Google Scholar], [Publisher]
  31. Ali U, Maalik A, Taj MB, Raheel A, Qureshi AK, Imran M, Sharif M, Tirmizi SA, Noor S, Alshater H. Facile Synthesis, Solublization Studies and anti-Inflammatory Activity of Amorphous Zinc (II) Centered Aldimine Complexes, Rev. Roum. Chim; 2020 Oct 1; 65(10):929-41. [Crossref], [Google Scholar], [Publisher]
  32. Akhtar MN, Noor S, Taj MB, Khalid M, Imran M. Thermodynamic and solubilization properties of a polynuclear copper complex in ionic surfactants media, J. Dispers. Sci. Technol.; 2021 May 17; 43(1):147-55. [Crossref], [Google Scholar], [Publisher]
  33. Kawamura H, Manabe M, Miyamoto Y, Fujita Y, Tokunaga S. Partition coefficients of homologous. omega.-phenylalkanols between water and sodium dodecyl sulfate micelles, J. Phys. Chem.; 1989 Jul; 93(14):5536-40. [Crossref], [Google Scholar], [Publisher]
  34. Usman M, Siddiq M. Surface and micellar properties of chloroquine diphosphate and its interactions with surfactants and human serum albumin, J. Chem. Therm.; 2013 Mar 1; 58:359-66. [Crossref], [Google Scholar], [Publisher]
  35. Usman M, Siddiq M. Probing the micellar properties of Quinacrine 2HCl and its binding with surfactants and Human Serum Albumin, Spectrochimica Acta Part A; 2013 Sep 1; 113:182-90. [Crossref], [Google Scholar], [Publisher]
  36. Nazar MF, Abid M, Danish M, Ashfaq M, Khan AM, Zafar MN, Mehmood S, Asif A. Impact of L-leucine on controlled release of ciprofloxacin through micellar catalyzed channels in aqueous medium, Journal of Molecular Liquids; 2015 Dec 1; 212:142-50. [Crossref], [Google Scholar], [Publisher]
  37. Nazar MF, Mukhtar F, Chaudry S, Ashfaq M, Mehmood S, Asif A, Rana UA. Biophysical probing of antibacterial gemifloxacin assimilated in surfactant mediated molecular assemblies, J. Mol. Liq.; 2014 Dec 1; 200:361-8. [Crossref], [Google Scholar], [Publisher]
  38. Duman O, Tunç S, Kancı B. Spectrophotometric studies on the interactions of CI Basic Red 9 and CI Acid Blue 25 with hexadecyltrimethylammonium bromide in cationic surfactant micelles, Fluid Phase Equilibria; 2011 Feb 15; 301(1):56-61. [Crossref], [Google Scholar], [Publisher]
  39. Nazar MF, Mukhtar F, Ashfaq M, Rahman HM, Zafar MN, Sumrra SH. Physicochemical investigation of antibacterial moxifloxacin interacting with quaternary ammonium disinfectants, Fluid Phase Equilibria; 2015 Nov 25; 406:47-54. [Crossref], [Google Scholar], [Publisher]
  40. Noor S, Taj MB, Naz I. Comparative solubilization of reactive dyes in single and mixed surfactants, J. Dispers. Sci. Technol.; 2022 Nov 3; 43(13):2058-68. [Crossref], [Google Scholar], [Publisher]
  41. M. J. Rosen, Surfactants and Interfacial Phenomenon, fourth ed., Wiley-Interscience Publication, New York (2012). [PDF]
  42. Tehrani-Bagha AR, Singh RG, Holmberg K. Solubilization of two organic dyes by cationic ester-containing gemini surfactants, J. colloid interface. Sci.; 2012 Jun 15; 376(1):112-8. [Crossref], [Google Scholar], [Publisher]
  43. 43. Khan AM, Shah SS. A UV-visible study of partitioning of pyrene in an anionic surfactant sodium dodecyl sulfate, Dispers. Sci. Technol.; 2008 Oct 24; 29(10):1401-7. [Crossref], [Google Scholar], [Publisher]
  44. Shah SS, Ahmad R, Shah SW, Asif KM, Naeem K. Synthesis of cationic hemicyanine dyes and their interactions with ionic surfactants, Colloids Surf. A Physicochem. Eng. Asp.; 1998 Jun 15; 137(1-3):301-5. [Crossref], [Google Scholar], [Publisher]
  45. Nazar MF, Khan AM, Shah SS. Association behavior of 3, 4-Dihydroxy-9, 10-dioxo-2-anthracenesulfonic acid sodium salt in cationic surfactant medium under different pH conditions, J. Dispers. Sci. Technol.; 2010 Apr 21; 31(5):596-605. [Crossref], [Google Scholar], [Publisher]
  46. Nazar MF, Shah SS, Khosa MA. Interaction of azo dye with cationic surfactant under different pH conditions, JSD; 2010 Oct; 13:529-37. ‎‎[Crossref], [Google Scholar], ‎‎[Publisher]‎‎
  47. Saad ST, Hoque MA, Khan MA. Spectroscopic studies of the investigation of molecular interaction between Acid Red and cetyltrimethylammonium bromide, Chem Xpress; 2014; 3(3):111-117. [Google Scholar], ‎‎[Publisher]‎‎
  48. Kasaikin VA, Zakharova JA. New approach to the removal of textile dyes from wastewaters. J. Environ. Prot. Ecol.; 2002; 3:249-54. [Google Scholar]