Document Type : Review Article

Author

Young researchers club, Boroujed branch, Islamic Azad University, Boroujerd, Iran

Abstract

The water relations play a fundamental role in seed comprehension of biology. In order to describe the process of drying and the effect on water activity, which controls biological change in storage, a sound knowledge of the relationship between equilibrium moisture content (EMC) and water activity/equilibrium relative humidity (ERH) is essential. The relationship between the total moisture content and water activity of the food, over a range of values, at a constant temperature and under equilibrium conditions, yields a moisture sorption isotherm when expressed graphically. This isotherm curve can be obtained in one of two ways; adsorption or desorption. The establishment and the mathematical description of the moisture sorption isotherms could help the food engineers to design these processing equipments. Here there are many researches on seeds of plant and some foods. In all researches seeds or foods has one or more mathematical models for describing of the moisture sorption isotherms. However, in all seeds or foods the equilibrium moisture contents increased with an increase in the water activity at any particular temperature and decreased with increase in temperature at constant water activity. The researches have suggested that the water potential of the seed or seed structures provides a better indicator of the seed water status than water content

Keywords

Ajibola, O. O., & Dairo, U. O. (1998). The relationship between equilibrium relative humidity and moisture content of sesame seed using the vapor manometric method. Ife Journal of Technology, 8(1),61–67.
Al-Muhtaseb A.H., W.A.M. McMinn, T.R.A. Magee. 2004. Water sorption isotherms of starch powders Part 1: mathematical description of experimental data. Journal of Food Engineering 61 297–307.
Alsadon A.A., 2001. Water sorption isotherms of vegetable seeds as influenced by seed species and storage temperature. J.Agric. Sci., 32(2), 157-170.
Arslan, N., & Tog˘rul, H. (2005). Moisture sorption isotherms for crushed chillies. Biosystems Engineering, 90, 47–61.
Arslan Nurhan, Hasan Togˇrul. 2004. Modelling of water sorption isotherms of macaroni stored in a chamber under controlled humidity and thermodynamic approach. Journal of Food Engineering 69 133–145.
Aviara, N. A., Ajibola, O. O., & Dairo, U. O. (2002). Thermodynamic of moisture sorption in sesame seed. Biosystems Engineering, 83(4), 423–431.
Ayranci, E. (1995). Equilibrium moisture characteristics of dried eggplant and okra. Nahrung, 39(3), 228–233.
Ayranci Erol, Osman Duman. 2005. Moisture sorption isotherms of cowpea (Vigna unguiculata L. Walp) and its protein isolate at 10, 20 and 30C. Journal of Food Engineering 70 (2005) 83–91.
Azimi, S. M., Farnia, A., Shaban, M.,and Lak, M. 2013. Effect of different biofertilizers on Seed yield of barley (Hurdeom vulgar L.), Bahman cultivar. International journal of Advanced Biological and Biomedical Research. Volume 1, Issue 5: 538-546.
Belghit, A., Belahmidi, M., Bennis, A., Boutaleb, B. C., & Benet, S. (1997). Etude num_erique d'uns_echoir solaire fonctionnant en convection forc_ee. Revue G_en_erale de Thermique, 36, 837-850.
Bianco, A. M., Pollio, M. L., Resnik, S. L., Boente, G., & Larumbe, A. (1997). Comparison of water sorption behaviour of three rice varieties under di€erent temperatures. Journal of Food Engineering, 33,
395±403.
Boente, G., Gonz_alez, H. H. L., Mart_õnez, E., Pollio, M. L., & Resnik, S. L. (1994). Sorption isotherms of Argentine maize hybrids. Anales de la Asociaci_on Qu_õmica Argentina, 82(3), 147-154.
Boente, G., Gonz_alez, H. H. L., Mart_õnez, E., Pollio, M. L., & Resnik, S. L. (1996). Sorption iostherms of corn ± Study of mathematical models. Journal of Food Engineering, 29, 115-128.
Boente, G., Larumbe, A., Monserrat, J., Pollio, M. L., Resnik, S., & Sanmartino, S. (1995). Multivariate statistical analysis of water sorption data of Argentine sorghum. Journal of Food Engineering, 25, 73-84.
Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309-319.
Castillo M.D, E.J. Mart_ınez , H.H.L. Gonz_alez , A.M. Pacin, S.L. Resnik. 2003. Study of mathematical models applied to sorption isotherms of Argentinean black bean varieties. Journal of Food Engineering 60: 343–348.
Chen, C. C., & Morey, R. V. (1989). Comparison of four EMC/ERH equations. Transactions of the ASAE, 32, 983–989.
Chen Chiachung. 2003. Moisture sorption isotherms of pea seeds. Journal of Food Engineering 58 45–51.
Chung, D. S., & Pfost, H. B. (1967). Adsorption and desorption of water vapour by cereal grains and their products. Part II. Development of general isotherms equations. Transactions of the ASAE, 10(4), 552–
555.
Chowdhury M.M.I, M.D. Huda , M.A. Hossain , M.S. Hassan. 2006. Moisture sorption isotherms for mungbean (Vigna radiata L). Journal of Food Engineering 74 462–467.
Peng Guilan, Xiaoguang Chen, Wenfu Wu , Xiujuan Jiang. 2007. Modeling of water sorption isotherm
for corn starch. Journal of Food Engineering 80 562–567
Debnath, S., Hemavathy, J., & Bhat, K. K. (2002). Moisture sorption studies on onion powder. Food Chemistry, 78, 479–482.
Henderson, S., & Pixton, S. W. (1982). The relationship between moisture content and equilibrium relative humidity of five types of wheat flour. Journal of Stored Products Research, 18, 27–30.
Henderson, S. M. (1952). A basic concept of equilibrium moisture. Agricultural Engineering, 33, 9–32.
Huang, B., & Mujumdar, A. S. (1993). Use of neural network to predict industrial dryer performance. Drying Technology, 11, 525–541.
Iglesias, H. A., & Chirife, J. (1976). Prediction of effect of temperature on water sorption isotherms of food materials. Journal of Food Technology, 11, 109–116.
Karel, M., & Yong, S. (1981). Autoxidation-initiated reactions in foods. In L. B. Rockland, & G. F. Stewart, Water Activity: Influences on Food Quality (pp. 511-529). New York: Academic Press.
Kaya Sevim , Talip Kahyaoglu. 2006. Influence of dehulling and roasting process on the thermodynamics of moisture adsorption in sesame seed. Journal of Food Engineering 76 139–147.
Kouhila M., A. Belghit , M. Daguenet , B.C. Boutaleb. 2001. Experimental determination of the sorption isotherms of mint (Mentha viridis), sage (Salvia o cinalis) and verbena (Lippia citriodora). Journal of Food Engineering 47 (2001) 281-287.
Kouhila, M., Belghit, A., & Daguenet, M. (1999). Approche exp_erimentale des isothermes de sorption de la menthe en vue d'un s_echage par _energie solaire. Revue des Energies Renouvelables, 2(1), 61-68.
Labuza, T. P., Tannenbaum, S. R., & Karel, M. (1970). Water content and stability of low-moisture and intermediate-moisture foods. Food Technology, 24, 543-549.
Labuza, T. P., Accott, K., Tatini, S. R., & Lee, R. Y. (1976). Water activity determination: a collaborative study of different methods. Journal of Food Science, 41, 910–917.
Labuza, T. P. (1975). Interpretation of sorption data in relation to the state of constituent water. In R. B. Duckworth (Ed.), Water relations of foods (pp. 155–172). London: Academic Press.
Labuza, T. P. (1976). Storage stability and improvement of intermediate moisture foods. Final report, contract no. NAS 9-10658, NASA. Houston, TX: Food and Nutrition Office.
Larumbe, A., Gonz_alez, H. H. L., Pollio, M. L., Mart_õnez, E., Boente, G., Resnik, S., Adrover, J., & Garibotti, G. (1994). Water sorption characteristics of Argentine wheat: Statistical methodology. Journal of Food Engineering, 21, 291-304.
Maroulis, Z. B., Tsami, E., Morinos-Kouris, D., & Saravacos, G. D. (1988). Application of the GAB model to the moisture sorption isotherms for dried fruits. Journal of Food Engineering, 7(1), 63–78.
Martinez, N. N., & Chiralt, A. (1996). Influence of roasting on the water sorption isotherms of nuts. Food Science and Technology International, 2(6), 399–404.
Maskan, M., & Gogus, F. (1997). The fitting of various models to water sorption isotherms of pistachio nut paste. Journal of Food Engineering, 33, 227–237.
Mazza, G., & Jayas, D. S. (1991). Evaluation of four three-parameter equations for the description of the moisture sorption data of Lathyrus pea seeds. Lebensmittel-Wissenschaft und-Technologie, 24, 562–565.
McMinn, W. A. M., & Magee, T. R. A. (1999). Studies on the effect of temperature on moisture sorption characteristics of potatoes. Journal of Food Processing, 22, 113–128.
McMinn, W. A. M., & Magee, T. R. A. (2003). Thermodynamic properties of moisture sorption of potato.
Journal of Food Engineering, 60, 155–157.
Menkov, N. D. (2000). Moisture sorption isotherms of chickpea seeds at several temperatures. Journal of Food Engineering, 45, 189–194.
Multon, J. L. (1980). Etat de liaison de l'eau dans les aliments, Probl_emes fondamentaux de s_echage, ATP-PIRDES.
Nikolay D. Menkov. 2000. Moisture sorption isotherms of chickpea seeds at several temperatures. Journal of Food Engineering 45 (2000) 189±194.
Oswin, C. R. (1946). The kinetics of package life III isotherm. Journal of the Society of Chemical industry, London, 65, 419–426.
Pagano A.M, R.H. Mascheroni. 2005. Sorption isotherms for amaranth grains. Journal of Food Engineering 67 441–450.
Park, B., Chen, Y. R., Whittaker, A. D., Miller, R. K., & Hale, D. S. (1994). Neural network modeling for beef sensory evaluation. Transactions of the American Society of Agricultural Engineers, 37, 1547–1553.
Pixton, S. W., & Henderson, S. (1979). Moisture relations of dried peas, shelled almonds and lupines. Journal Stored Product Research, 15, 59–63.
Probert R.J., Manger K.R., and Adams J., 2003. Seed viability under ambient conditions, and the importance of drying. In: Seed Conservation: Turning Science into Practice. Royal Botanic Gardens, Kew, www.kew.org.
Rao, V. G., & Pfost, H. B. (1978). Physical properties related to drying 20 grains. ASAE paper no. 78- 3539. St. Joseph, Michigan: American Society of Agricultural Engineers.
Ruan, R., Almaer, S., & Zhang, J. (1995). Prediction of dough rheological properties using neural networks. Cereal Chemistry, 72, 308–311.
Sablani, S. S., Ramaswamy, H. S., & Prasher, S. O. A. (1995). Network approach for thermal processing applications. Journal of Food Processing and Preservation, 19, 283–301.
Shaban, M. 2013. Biochemical aspects of protein changes in seed physiology and germination. International journal of Advanced Biological and Biomedical Research. Volume 1, Issue 8: 885-898.
Shepherd, H., & Bhardwaj, R. K. (1986). A study of the desorption isotherms of rewet pigeon pea type- 17. Journal of Food Science, 51, 595–598.
Shrikant Baslingappa Swami, S.K. Das , B. Maiti. 2005. Moisture sorption isotherms of black gra nuggets (bori) at varied temperatures. Journal of Food Engineering 67 477–482.
Singh, P. C., & Singh, R. K. (1996). Application of GAB model for water sorption isotherms of food products. Journal of Food Processing and Preservation, 20, 203–220.
Singh, R. K., & Lund, D. B. (1984). Mathematical modeling of heat and moisture transfer-related properties of intermediate moisture apples. Journal of Food Processing and Preservation, 8, 191– 210.
Sokhansanj, S., Zhijie, W., Jayas, D., & Kameoka, T. (1986). Equilibrium relative humidity–moisture content of rapeseed (canola) from 5 to 25 _C. Transactions of the ASAE, 29(2), 837–839.
Sood, V. C., & Heldman, D. R. (1974). Analysis of a vapour pressure manometer for measurement of water activity in non-fat dry milk. Journal of Food Science, 39, 1011–1013.
Sreekanth, S., Ramaswamy, H. S., & Sablani, S. S. (1998). Prediction of psychrometric parameters using neural networks. Drying Technology, 16, 825–837.
Thibault, J., & Grandjean, B. P. A. (1992). Process control using feedforward neural networks. Journal of Systems Engineering, 2, 198–212.
Van den Berg, C., & Bruin, S. (1981). Water activity and its estimation in food systems: theoretical aspects. In L. B. Rockland & G. F. Steward (Eds.), Water activity: Influences on food quality (pp. 1–61). New York: Academic Press.
Van den Berg, C. (1984). Description of water activity of foods for engineering purposes by means of the
GAB model of sorption. In B. M. Mckenna (Ed.), Engineering and foods. New York: Elsevier. Vazquez G., F. Chenlo, R. Moreira. 2003. Sorption isotherms of lupine at different temperatures. Journal of Food Engineering 60 449–452.
Vega A., Andrés A., and Fito P., 2005. Model of drying kinetic of red pepper (Capsicum annuum L. cv. Lamuyo) (in Spanish). Información Tecnológica, 16(6), 3-11.
Veltchev, Z. N., & Menkov, N. D. (2000). Desorption isotherms of apples at several temperatures, Drying Technology, 18, 1127-1138.
Vertucci C.W. and Leopold A.C., 1987a. Water binding in legume seeds. Plant Physiol., 85(1), 224-231.
Vertucci C.W. and Leopold A.C., 1987b. The relationship between water binding and desiccation tolerance in tissues. Plant Physiol., 85(1), 232-238.
Wang, N., & Brennan, J. G. (1991). Moisture sorption isotherms characteristics of potatoes at four temperatures. Journal of Food Engineering, 14, 269–287.