Document Type : Original Article


1 Department of Chemistry, Saveh Branch, Islamic azad University, Saveh, Iran

2 Department of Chemistry, Bourojerd Branch, Islamic Azad University, Bourojerd, Iran


Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the self assembly pathway. Herein, we report the use of an azobenzene β-hairpin mimetic to study byUsing Density Functional Theory the role turn nucleation plays on Aβ self assembly.[3-(3-Aminomethyl) phenylazo] phenyl acetic acid (AMPP)was incorporated into the putative turn region of Aβ42 to elicit temporal control over Aβ42 turn nucleation; it was hypothesized that self-assembly would be favored in the cis-AMPP conformation if β-hairpin formation occurs during Aβ self-assembly and that the trans-AMPP conformer would display attenuated fibrillization propensity. It was unexpectedly observed that the trans-AMPP Aβ42Additionally, cis-trans photo isomerization resulted in rapid formation of native-like amyloid fibrils and trans−cis conversion in the fibril state reduced the population of native-like fibrils. Thus, temporal photo control over Aβ turn conformation providessignificant insight into Aβ self-assembly


Aemissegger, A., and Hilvert, D. (2007) Synthesis andapplication of an azobenzene amino acid as a lightswitchable turnelement in polypeptides. Nat. Protoc. 2, 161-167.
Ahmed, M., Davis, J., Aucoin, D., Sato, T., Ahuja, S., Aimoto, S,.Elliott, J. I., Sostrand, W. E. V., and Smith, S. O. (2010) Structuralconversion of neurotoxic amyloid-β(1-42) oligomers to fibrils. Nat.
Alzheimer’s Aβ-(1-42) Peptide in Aqueous Media is Reversible: AStep by Step Conformational Analysis Suggests the Location of βConformation Seeding. ChemBioChem 7, 257-267.
Beharry, A. A., and Woolley, G. A. (2011) Azobenzene photoswitches for biomolecules. Chem. Soc. Rev 40, 4422-4437.
Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L,.Zurdo, J., Taddei, N., Ramponi, G., Dobson, C. M., and Stefani, M.(2002)Inherent toxicity of aggregates implies a common mechanismfor protein misfolding diseases. Nature 416, 507-511.
Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D’Ursi,A. M., Temussi, P. A., and Picone, D. (2002) Solution structure of theAlzheimer amyloid β-peptide (1-42) in an apolar microenvironment.Eur. J. Biochem. 269, 5642-5648.
Dong, S.-L., Loweneck, M., Schrader, T. E., Schreier, W. J,.Moroder, L., and Renner, C. (2006) A Photocontrolled β-HairpinPeptide. Chem.Eur. J. 12, 1114-1120.
Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C,.Mellon, A., Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D,.Teplow, D. B., and Selkoe, D. J. (1992) Amyloid β-peptide is
producedby cultured cells during normal metabolism. Nature 359, 322-325.
Hardy, J., and Selkoe, D. J. (2002) The Amyloid Hypothesis ofAlzheimer’s Disease: Progress and Problems on the Road toTherapeutics. Science 297, 353-356.
Hoyer, W., Grönwall, C., Jonsson, A., Ståhl, S., and Härd, T. (2008) Stabilization of a β-hairpin in monomeric Alzheimer’s amyloid-β peptide inhibits amyloid formation. Proc. Natl. Acad. Sci. U.S.A. 105, 5099-5104.
Krautler, V., Aemissegger, A., Hünenberger, P. H., Hilvert, D,.Hansson, T., and Gunsteren, W. F. v. (2005) Use of MolecularDynamics in the Design and Structure Determination of a Photoinducibleβ- Hairpin. J. Am. Chem. Soc. 127, 4935-4942.
Lazo, N. D., Grant, M. A., Condron, M. C., Rigby, A. C., andTeplow, D. B. (2005) On the nucleation of amyloid β-proteinmonomer folding. Protein Sci. 14, 1581-1596.
Miller, Y., Ma, B., and Nussinov, R. (2009) Polymorphism ofAlzheimer’s Aβ17-42 (p3) Oligomers: The Importance of the TurnLocation and Its Conformation. Biophys. J. 97, 1168-1177.
Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N,.Leapman, R. D., Delaglio, F., and Tycko, R. (2002) A structural modelfor Alzheimer’s β-amyloid fibrils based on experimental constraintsfrom solid state NMR. Proc. Natl. Acad. Sci. U.S.A. 99, 16742-16747.
Sandberg, A., Luheshi, L. M., Söllvander, S., Barros, T. P. d,Macao, B., Knowles, T. P. J, Biverstål, H., Lendel, C., Ekholm-Petterson, F., Dubnovitsky, A., Lannfelt, L., Dobson, C. M., and Härd,T. (2010)
Stabilization of neurotoxic Alzheimer amyloid-β oligomersby protein engineering. Proc. Natl. Acad. Sci. U.S.A. 107, 15595-15600.
Sciaretta, K. L., Gordon, D. J., Petkova, A. T., Tycko, R., and Meredith, S. C. (2005) Aβ40-Lactam (D23/K28) Models a Conformation Highly Favorable for Nucleation of Amyloid. Biochemistry 44, 6003-6014.
Struct.Mol. Biol. 17, 561-567.(13)Balbach, J. J., Petkova, A. T., Oyler, N. A., Antzutkin, O. N,.Gordon, D. J., Meredith, S. C., and Tycko, R. (2002) Supramolecular Structure in Full-Length Alzheimer’s β-
Amyloid Fibrils: Evidence for aParallel β-Sheet Organization from Solid-State Nuclear MagneticResonance. Biophys. J. 83, 1205-1216.
Tomaselli, S., Esposito, V., Vangone, P., Nuland, N. A. J. v,.Bonvin, A. M. J. J., Guerrini, R., Tancredi, T., Temussi, P. A., andPicone, D. (2006) The α-to-β Conformational Transition ofACS Chemical Neuroscience Research | ACS Chem. Neurosci. 2012, 3,
Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R,.Wolfe, M. S., Rowan, M. J., and Selkoe, D. J. (2002) Naturally secretedoligomers of amyloid-β protein potently inhibit hippocampal longtermpotentiation in vivo. Nature 416, 535-539.